2. On Spaces with a Map $CP^n \rightarrow M$ of Degree One

By Hiroo SHIGA

Department of Mathematics, Tokyo Institute of Technology (Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1976)

§ 1. Introduction. Let M be a connected oriented closed topological m manifold. It is known in [2] that if $f S^m \to M$ is a map of degree one, then f is a homotopy equivalence. And moreover L.E. Spence has proved in [3] that if a map $f S^p \times S^q \to M$ is of degree one then M has the homotopy type of S^{p+q} or f is a homotopy equivalence. In this note we shall consider the case of complex projective space. Then we shall prove

Theorem. If M admits a map $f CP^n \rightarrow M$ of degree one, then M has the homotopy type of S^{2n} , CP^n , or cohomological quartenion projective space. Especially if n is odd M has the homotopy type of S^{2n} or CP^n .

Corollary. Let QP^n be the n dimensional quaternion projective space. If M admits a map f $QP^n \rightarrow M$ of degree one, then M has the homotopy type of S^{4n} or f is a homotopy equivalence.

§ 2. Some cohomological conditions. At first we note the following lemma in [2]

Lemma 1. Let M, N be connected oriented closed topological n manifold. If $f: M \rightarrow N$ is a degree one map, then

- (1) $f_*\pi_1(M) \rightarrow \pi_1(N)$ is an epimorphism.
- (2) $f_*H_i(M) \rightarrow H_i(N)$ is a split epimorphism.
- (3) $f^*H^i(M) \rightarrow H^i(N)$ is a monomorphism.

Now let $f: CP^n \to M$ be a map of degree one. Then we obtain from Lemma 1 that M is simply connected and $H^i(M) \cong 0$ $(i=1 \mod 2)$. Thus we may assume that $H^{ik}(M) \cong Z$, and $H^i(M) \cong Z$ (0 < i < 2k).

Lemma 2.
$$n \equiv 0 \pmod{2}$$
 and $H^*(M) = \frac{Z[\alpha]}{(\alpha^{n/k} + 1)}$

Proof. Let α be a generator of $H^{2k}(M) = Z$, and μ_M be the fundamental class of $H^{2n}(M)$. By (3) of Lemma 1 we have $f(\alpha) = mx^k \ (m \neq 0)$ where x denotes the generator of $H^2(\mathbb{CP}^n)$. Therefore, from $f(\alpha^s) = m^s x^{ks}$, we obtain that

$$H^{2i}(M) \cong \mathbb{Z}$$
, $i=0 \pmod{k}$ and $i \leq n$.

Suppose that n=ks+r $(0 \le r \le k)$. Then by the duality of $H^*(M)$, we have $H^{2r}(M)=0$. But this contradicts the assumption. Thus we have $k=0 \pmod{n}$. Next we suppose that $H^{2a}(M)=Z$ $(jk\le a\le (j+1)k\le n)$, for some j and let β be a generator of $H^{2a}(M)$. Then we have

 $f(\beta) = px^{a}(p \neq 0)$. Since $n-k \leq (n/k-1)k+a-jk \leq n$ and $f(\alpha^{(n/k)-j}\beta) = m^{(n/k-1)-j} px^{m-(j+1)k+a}$. We have $H^{*}(M) = Z(*=n-(j+1)k+a)$.

This again contradicts the assumption by duality. Thus the additive structure of $H_*(M)$ is as follows,

$$H^{2i}(M) = Z$$
 $(i = 0 \text{ mod. } k)$
 $H^{2i}(M) = 0$ $(i \neq 0 \text{ (mod. } k))$

Now, since $f(\alpha^{n/k}) = f(\alpha^{n/k} = mx^n \text{ and } f(\mu_M) = x$.

Obviously this means that $H^*(M)$ is isomorphic to the subring of $H^*(CP^n)$ generated by x^k . Thus we have Lemma 2.

§ 3. Proof of the main theorem. If k=n M is obviously S^{2n} up to homotopy. So we assume k < n then 4k skelton of M is the form $S^{2k} \cup e^{4k}$ up to homotopy. Hence by Adams' theorem k must be one of $\{1,2,4\}$. If k=1, f is a homotopy equivalence. If k=2, M is a simply connected cohomological quaternion projective space.

Lemma 3. Let K be a Poincare complex of the form $S^8 \cup e^{16}$ up to homotopy. Then there is no map $f CP^8 \rightarrow K$ of degree one.

Proof. Let $\alpha \in H^2(CP^8)$ and $\beta \in H^8(K)$ be generators. Suppose there exists a map f $CP^8 \to K$ of degree one. Then by (3) of Lemma 1 $f^*(\beta) = \pm \alpha^4$ and

$$o = f * \mathcal{Q}_3^1(\beta) = \mathcal{Q}_3^1 f * (\beta) = \pm \mathcal{Q}_3^1(\alpha) = \pm \alpha^4 \neq 0$$

where \mathcal{P}_3 is the 3rd reduced power operation.

This is a contradiction.

Thus we can eliminate the case k=4 and the proof is completed. Next let ρ $CP^{2n} \rightarrow QP^n$ be a restriction of the natural map $CP^{2n+1} \rightarrow QP^n$, and f $QP^n \rightarrow M$ be a map of degree one. Since the composition map $f \circ \rho$ $CP^{2n} \rightarrow M$ is of degree one, we can apply the theorem to this case. Then obviously M has the homotopy type of sphere or f is a homotopy equivalence. Thus we have the corollary.

Remark. In general we can not get more details about the case of k=2. However in the case of $M=S^4\cup e^8$ we can prove the following result.

If M admits a smooth structure up to homotopy, then M has the same homotopy type as a quaternion projective space. And moreover if M is a Poincare complex, then there exists M of two distinct kind. Of course one of them is a quarternion projective space and another one admits no smooth structure up to homotopy (see [1]).

References

[1] S. Sasao: An example of theorem of W. Browder. J. Math. Soc. Japan, 17(2), 187-193 (1965).

- [2] L. C. Siebenmann: On detecting open collars. Trans. Amer. Math. Soc., 142, 201-227 (1969).
- [3] L. E. Spence: On the image of $S^p \times S^q$ under mappings of degree one. Illinois J. of Math., 17, 111-114 (1973).