2. On Spaces with a Map $\mathrm{CP}^{n} \rightarrow \mathrm{M}$ of Degree One

By Hiroo Shiga
Department of Mathematics, Tokyo Institute of Technology
(Comm. by Kenjiro Shoda, M. J. A., Jan. 12, 1976)

§ 1. Introduction. Let M be a connected oriented closed topological m manifold. It is known in [2] that if $f S^{m} \rightarrow M$ is a map of degree one, then f is a homotopy equivalence. And moreover L.E. Spence has proved in [3] that if a map $f S^{p} \times S^{q} \rightarrow M$ is of degree one then M has the homotopy type of S^{p+q} or f is a homotopy equivalence. In this note we shall consider the case of complex projective space. Then we shall prove

Theorem. If M admits a map $f C P^{n} \rightarrow M$ of degree one, then M has the homotopy type of $S^{2 n}, C P^{n}$, or cohomological quartenion projective space. Especially if n is odd M has the homotopy type of $S^{2 n}$ or $C P^{n}$.

Corollary. Let $Q P^{n}$ be the n dimensional quaternion projective space. If M admits a map $f Q P^{n} \rightarrow M$ of degree one, then M has the homotopy type of $S^{4 n}$ or f is a homotopy equivalence.
§ 2. Some cohomological conditions. At first we note the following lemma in [2]

Lemma 1. Let M, N be connected oriented closed topological n manifold. If $f: M \rightarrow N$ is a degree one map, then
(1) $f_{\sharp \pi_{1}}(M) \rightarrow \pi_{1}(N)$ is an epimorphism.
(2) $f_{*} H_{i}(M) \rightarrow H_{i}(N)$ is a split epimorphism.
(3) $f^{*} H^{i}(M) \rightarrow H^{i}(N)$ is a monomorphism.

Now let $f: C P^{n} \rightarrow M$ be a map of degree one. Then we obtain from Lemma 1 that M is simply connected and $H^{i}(M) \cong 0(i=1 \bmod .2)$. Thus we may assume that $H^{2 k}(M) \cong Z$, and $H^{i}(M) \cong Z(0<i<2 k)$.

Lemma 2. $n \equiv 0(\bmod 2)$ and $H^{*}(M)=\frac{Z[\alpha]}{\left(\alpha^{n / k}+1\right)}$
Proof. Let α be a generator of $H^{2 k}(M)=Z$, and μ_{M} be the fundamental class of $H^{2 n}(M)$. By (3) of Lemma 1 we have $f(\alpha)=m x^{k}(\mathrm{~m} \neq 0)$ where x denotes the generator of $H^{2}\left(C P^{n}\right)$. Therefore, from $f\left(\alpha^{s}\right)$ $=m^{s} x^{k s}$, we obtain that

$$
H^{2 i}(M) \cong Z, i=0(\bmod . k) \text { and } i \leqq n
$$

Suppose that $n=k s+r(0<r<k)$. Then by the duality of $H^{*}(M)$, we have $H^{2 r}(M)=0$. But this contradicts the assumption. Thus we have $k=0(\bmod . n)$. Next we suppose that $H^{2 a}(M)=Z(j k<a<(j+1) k \leqq n$, for some j) and let β be a generator of $H^{2 a}(M)$. Then we have

$$
\begin{aligned}
& f(\beta)=p x^{a}(p \neq 0) . \quad \text { Since } \quad n-k<(n / k-1) k+a-j k<n \text { and } f\left(\alpha^{(n / k)-j} \beta\right) \\
& =m^{(n / k-1)-j} p x^{m-(j+1) k+a} . \quad \text { We have } H^{*}(M)=Z(*=n-(j+1) k+a) .
\end{aligned}
$$

This again contradicts the assumption by duality. Thus the additive structure of $H_{*}(M)$ is as follows,

$$
\begin{array}{ll}
H^{2 i}(M)=Z & (i=0 \text { mod. } k) \\
H^{2 i}(M)=0 & (i \neq 0(\bmod . k))
\end{array}
$$

Now, since $f\left(\alpha^{n / k}\right)=f\left(\alpha^{n / k}=m x^{n}\right.$ and $f\left(\mu_{M}\right)=x$.
Obviously this means that $H^{*}(M)$ is isomorphic to the subring of H^{*} $\left(C P^{n}\right)$ generated by x^{k}. Thus we have Lemma 2.
§ 3. Proof of the main theorem. If $k=n M$ is obviously $S^{2 n}$ up to homotopy. So we assume $k<n$ then $4 k$ skelton of M is the form $S^{2 k} \cup e^{4 k}$ up to homotopy. Hence by Adams' theorem k must be one of $\{1,2,4\}$. If $k=1, f$ is a homotopy equivalence. If $k=2, M$ is a simply connected cohomological quaternion projective space.

Lemma 3. Let K be a Poincare complex of the form $S^{8} \cup e^{16}$ up to homotopy. Then there is no map $f C P^{8} \rightarrow K$ of degree one.

Proof. Let $\alpha \in H^{2}\left(C P^{8}\right)$ and $\beta \in H^{8}(K)$ be generators. Suppose there exists a map $f C P^{8} \rightarrow K$ of degree one. Then by (3) of Lemma 1 $f^{*}(\beta)= \pm \alpha^{4}$ and

$$
o=f^{*} \mathcal{P}_{3}^{1}(\beta)=\mathscr{P}_{3}^{1} f *(\beta)= \pm \mathcal{P}_{3}^{1}(\alpha)= \pm \alpha^{4} \neq 0
$$

where \mathscr{P}_{3} is the 3 rd reduced power operation.
This is a contradiction.
Thus we can eliminate the case $k=4$ and the proof is completed. Next let $\rho C P^{2 n} \rightarrow Q P^{n}$ be a restriction of the natural map $C P^{2 n+1} \rightarrow Q P^{n}$, and $f Q P^{n} \rightarrow M$ be a map of degree one. Since the composition map $f \circ \rho$ $C P^{2 n} \rightarrow M$ is of degree one, we can apply the theorem to this case. Then obviously M has the homotopy type of sphere or f is a homotopy equivalence. Thus we have the corollary.

Remark. In general we can not get more details about the case of $k=2$. However in the case of $M=S^{4} \cup e^{8}$ we can prove the following result.

If M admits a smooth structure up to homotopy, then M has the same homotopy type as a quaternion projective space. And moreover if M is a Poincare complex, then there exists M of two distinct kind. Of course one of them is a quarternion projective space and another one admits no smooth structure up to homotopy (see [1]).

References

[1] S. Sasao: An example of theorem of W. Browder. J. Math. Soc. Japan, 17 (2), 187-193 (1965).
[2] L. C. Siebenmann: On detecting open collars. Trans. Amer. Math. Soc., 142, 201-227 (1969).
[3] L. E. Spence: On the image of $S^{p} \times S^{q}$ under mappings of degree one. Illinois J. of Math., 17, 111-114 (1973).

