16. An Interpolation of Operators in the Martingale H_{p}-spaces

By Masami OKada
Mathematical Institute, Tôhoku University
(Comm. by Kôsaku Yosida, m. J. A., Feb. 12, 1976)

1. Introduction. In this note we show that the Marcinkiewicz interpolation theorem of operators can be extended in the martingale setting.
2. Definition. Let $\left(\Omega, \mathscr{F}, P,\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}\right)$ a probability space furnished with a non-decreasing sequence of σ-algebras of measurable subsets $\mathscr{F}_{1} \subset \cdots \subset \mathscr{F}_{n} \subset \mathscr{F}_{n+1} \subset \cdots \subset \mathscr{F}=\bigvee_{n=1}^{\infty} \mathscr{F}_{n}$.

We define the set of random variables $H_{p}=H_{p}\left(\Omega, \mathscr{F}, P,\left\{\mathcal{F}_{n}\right\}_{n=1}^{\infty}\right)$ $=\left\{f \in L^{p}(\Omega) ;\||f|\|_{p}=\left[\int_{\Omega}\left(f^{*}\right)^{p} d P\right]^{1 / p}<\infty\right\}$, where $f^{*}(w)=\sup _{1 \leqq n<\infty}\left|f_{n}(w)\right|$ and $p \geqq 1$.

Note that $H_{1} \subseteq L^{1}$, and that $H_{p}=L^{p}$ for $1<p<\infty$. In fact, there exists a constant A_{p} such that $\|f\|_{p} \leqq\||f|\|_{p} \leqq A_{p}\|f\|_{p}$. Furthermore, as is well-known, the norm $\||f|\|_{p}$ is equivalent to $\left\|\left(\sum_{n=1}^{\infty}\left|\Delta f_{n}\right|^{2}\right)^{1 / 2}\right\|_{p}$, where $\Delta f_{n}=f_{n}-f_{n-1}, f_{0}=0$ ([1]-[3]).
3. Weak type result. Let T be an operator from H_{p} to the set of random variables defined on a σ-finite measure space ($\widetilde{\Omega}, \widetilde{\mathscr{F}}, \tilde{P}$).

Theorem. Suppose that
(1) T is quasi-linear, i.e. $|T(f+g)| \leqq C(|T f|+|T g|)$
(2) $\tilde{P}(\{w ;|T f(w)|>t\})^{1 / q_{i}} \leqq M_{i} / t| | f \mid \|_{p_{i}}$, for all $t>0$, where $1 \leqq p_{i}$ $\leqq q_{i}<\infty(i=0,1), p_{0} \neq p_{1}$ and $q_{0} \neq q_{1}$. Let us put $1 / p=(1-\theta) / p_{0}+\theta / p_{1}$ and $1 / q=(1-\theta) / q_{0}+\theta / q_{1}, 0<\theta<1$. Then

$$
\|T f\|_{q} \leqq A C(C+1) M_{0}^{1-\theta} M_{1}^{\theta}\|f\|_{p}
$$

where

$$
A^{q}=0\left(\left(q_{1}-q\right)^{-1}+\left(q-q_{0}\right)^{-1}(p-1)^{-q_{0}}\right)
$$

Proof. We consider the case $1=p_{0}<p_{1}$ and $q_{0}<q_{1}$ only, the other cases are treated similarly.

1-st step. The following decomposition lemma is used in the proof, which corresponds to the Calderón-Zygmund decomposition ([4]-[6]).

Lemma (R. Gundy). Let $v \in L^{1}(\Omega), r \geqq 1$. Then for each $a>0$, v is decomposed into three random variables $g, h, k, v=g+h+k$, which satisfy

$$
\begin{gather*}
P\left(\left\{w ; g^{*}(w)>0\right\}\right) \leqq K / a\|v\|_{1}, \quad\|g\|_{r} \leqq K\|v\|_{r} \tag{1}\\
\left\|\sum_{n=1}^{\infty}\left|\Delta h_{n}\right|\right\|_{1} \leqq K\|v\|_{1}, \quad\|h\|_{1} \leqq K\|v\|_{1} \tag{2}
\end{gather*}
$$

(3)

$$
\|k\|_{\infty} \leqq K a, \quad\|k\|_{1} \leqq K\|v\|_{1}
$$

with a constant K independent of a, v, r.
Now put $\lambda=p_{0}\left(q-q_{0}\right) / q_{0}\left(p-p_{0}\right), \quad \rho=-q_{0} /\left(q_{1}-q_{0}\right), \quad \sigma=q_{1} /\left(q_{1}-q_{0}\right)$, $\tau=\left(p_{1} q-p q_{1}\right) / p_{1}\left(q-q_{1}\right), B=M_{0}^{\rho} M_{1}^{\sigma}\|f\|_{p}^{\tau}, r=(p+1) / 2(>1)$.

2-nd step. Let $f \in L^{p}(\Omega)$. Then for each $y>0$ the following decomposition of f is possible;
(1) $f=u+u^{\prime}, u^{\prime}=k+g+h$
(2) $u=f$, if $|f|<(y / B)^{2}$ and $u=0$, elsewhere.
(3) There exists a constant K independent of y, u^{\prime}, r, so that

$$
\begin{gathered}
\|k\|_{p_{1}}^{p_{1}} \leqq K(y / B)^{\lambda\left(p_{1}-r\right)}\left\|u^{\prime}\right\|_{r}^{r} \\
\|g\|_{1} \leqq K A_{r}(y / B)^{\lambda(1-r)}\left\|u^{\prime}\right\|_{r}^{r}
\end{gathered}
$$

and

$$
\|h \mid\|_{1} \leqq K(y / B)^{x(1-r)}\left\|u^{\prime}\right\|_{r}^{r} .
$$

In fact (3) is shown by lemma as follows. Put $v=u^{\prime}$ and $a=(y / B)^{2}$ in the following inequalities.

$$
\begin{aligned}
&\|k\|_{p_{1}}^{p_{1}} \leqq \int|k| d P \cdot\|k\|_{\infty}^{p_{1}-1} \leqq K\|v\|_{1} a^{p_{1}-1} \leqq K \int|v|^{r} d P \\
&\|\mid g\|\left\|_{1} \leqq P\left(g^{*}>0\right)^{1 / r}\left[\int\left(g^{*}\right)^{r} d P\right]^{1 / r} \leqq\left(K / a\|v\|_{1}\right)^{1 / r^{\prime}} A_{r}\right\| g \|_{r} \\
& \leqq \leqq a^{r / r^{\prime}} \cdot A_{r}\|v\|_{r}^{r / r^{\prime}+1}
\end{aligned}
$$

and

$$
\left|\left\|h\left|\left\|_{1} \leqq\right\| \sum_{n=1}^{\infty}\right| \Delta h_{n} \mid\right\|_{1} \leqq K\|v\|_{1} \leqq K a^{1-r}\|v\|_{r}^{r} .\right.
$$

3-rd srep. Considering the decomposition above, we may write

$$
\|T f\|_{q}^{q}=q \int_{0}^{\infty} y^{q-1} \tilde{P}(|T f|>y) d y \leqq q(4 c(c+1))^{q}\left(I_{1}+I_{2}+I_{3}+I_{4}\right),
$$

where

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty} y^{q-1} \tilde{P}(|T u|>y) d y \\
& I_{2}=\int_{0}^{\infty} y^{q-1} \tilde{P}(|T k|>y) d y \\
& I_{3}=\int_{0}^{\infty} y^{q-1} \tilde{P}(|T g|>y) d y
\end{aligned}
$$

and

$$
I_{4}=\int_{0}^{\infty} y^{q-1} \tilde{P}(|T h|>y) d y
$$

Now the rest of the proof is almost the same as in [4]. For example, we estimate the value I_{3} as follows.

$$
\begin{aligned}
I_{3} & \leqq M_{0}^{q_{0}} \int_{0}^{\infty} y^{q-q_{0}-1}\||g|\|_{0}^{q_{0}} d y \\
& \leqq K A_{r}^{q_{0}} M_{0}^{q_{0}} B^{\lambda(r-1) q_{0}} \int_{0}^{\infty} y^{q-q_{0}-1+\alpha(1-r) q_{0}}\left\|u^{\prime}\right\|_{r}^{r q} d y \\
& \left.\leqq K A_{r}^{q_{0}} M_{0}^{q_{0}} B^{\lambda(r-1) q_{0}}\left[\iiint_{0}^{B|f|^{1 / \lambda}} y^{q-q_{0}-1+\lambda(1-r) q_{0}}\left|u^{\prime}\right|^{q_{0} r} d y\right\}^{1 / q_{0}} d p\right]^{q_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq K A_{r}^{q_{0}} M_{0}^{q_{0}} B^{q-q_{0}} /\left(\left(q-q_{0}\right)+\lambda(1-r) q_{0}\right)\left[\int|f|^{\left(q-q_{0}\right) / q_{0} \lambda+1} d P\right]^{q_{0}} \\
& \leqq 0\left(1 /(r-1)^{q_{0}}\left(q-q_{0}\right)\right) M_{0}^{(1-\theta) q} M_{1}^{\theta^{q}}\|f\|_{p}^{q} \text { Q.E.D. }
\end{aligned}
$$

4. Remarks.
(1) The result also holds even if $P(\Omega)=\infty$.
(2) If $X=\left(X_{n}\right)_{n=0}^{\infty}$ is a martingale with respect to ($\left.\Omega, \mathcal{F}, P,\left\{\mathcal{F}_{n}\right\}_{n=1}^{\infty}\right)$ we say that $X \in M_{p}(1 \leqq p<\infty)$ when $\|X\|_{M_{p}}=\sup _{n \geqq 1} E\left(\left|X_{n}\right|^{p}\right)^{1 / p}<\infty$. Then H_{p} is isomorphic to M_{p} for $1 \leqq p<\infty$ by the correspondence, $f(w)$ $\leftrightarrow X_{\infty}(w)=\lim _{n \rightarrow \infty} X_{n}(w)$. Therefore it is concluded that the interpolation theorem of operators also holds on martingale spaces M_{p} for $1 \leqq p<\infty$.

References

[1] D. L. Burkholder and R. F. Gundy: Extrapolation and interpolation of quasi-linear operators on martingale transforms. Acta Math., 124, 249304 (1970).
[2] B. Davis: On the integrability of the martingable square function. Israel Journal Math., 8, 187-190 (1970).
[3] A. Garsia: Martingale Inequalities. Benjamin, Inc. (1973).
[4] S. Igari: An extension of the interpolation theorem of Marcinkiewicz. Tôhoku Math. J., 15, 343-358 (1963).
[5] E. M. Stein: Topics in Harmonic Analysis. Ann. Math. Studies, 63. Princeton Univ. Press (1970).
[6] -: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, N. J. (1970).
[7] A. Zygmund: Trigonometric Series (2nd ed.). Cambridge Univ. Press, London (1968).

