26. On the Irreducible Characters of the Finite Unitary Groups

By Noriaki KAWANAKA Department of Mathematics, Osaka University (Comm. by Kenjiro Shoda, M. J. A., March 12, 1976)

Let k be a finite field, and k_2 the quadratic extension of k. The purpose of the present paper is to announce a theorem which gives a method to construct the irreducible characters of the finite unitary group $U_n(k_2)$ using those of the finite general linear group $GL_n(k_2)$, at least if the characteristic of k is not 2. As an application, we also obtain a parametrization of the irreducible characters of $U_n(k_2)$ which is dual to a known parametrization of the conjugacy classes. Proofs are omitted and will appear elsewhere.

1. Let \mathfrak{G} be the general linear group $GL_n(K)$ over an algebraically closed field K of positive characteristic p. Let k be a finite subfield of K, and $k_m(\subset K)$ the extension of k of degree $m < \infty$. We denote by τ the Frobenius automorphism of K with respect to k. Then τ acts naturally on \mathfrak{G} as an automorphism. Let σ be the automorphism of \mathfrak{G} defined by

$$x^{\sigma} = (({}^{t}x)^{\tau})^{-1} \qquad (x \in \mathfrak{G})$$

where ${}^{t}x$ is the transposed matrix of $x \in \mathfrak{G}$. For a positive integer m, put

$$\mathfrak{G}_{\sigma^m} = \{ x \in G \mid x^{\sigma^m} = x \}.$$

Then we have

$$\mathfrak{G}_{\sigma^m} = \begin{cases} GL_n(k_m) & \text{ if } m \text{ is even,} \\ U_n(k_{2m}) & \text{ if } m \text{ is odd.} \end{cases}$$

In the following, we fix m and put $G = \bigotimes_{\sigma^m}$ and $G_{\sigma} = \bigotimes_{\sigma} = U_n(k_2)$. The restriction of σ to G is an automorphism of the finite group G. In the following, we denote this automorphism also by σ . Let A be the cyclic group of order m generated by the automorphism σ of G. Assume that G and A are embedded in their semi-direct product GA. The following lemma is well known.

Lemma 1. Let H be a finite group, and A a finite cyclic group generated by an automorphism σ of H. If an irreducible complex character χ of H is fixed by σ (i.e. satisfies $\chi(x^{\sigma}) = \chi(x)$ for all $x \in H$), then there exists an irreducible character $\tilde{\chi}$ of the semi-direct product HA whose restriction to H equals χ .

For $x \in G = \mathfrak{G}_{\sigma^m}$, put $N(x) = xx^{\sigma}x^{\sigma^2} \cdots x^{\sigma^{m-1}}$.

N. KAWANAKA

Lemma 2. (a) Let x be an element of G. The conjugacy class $C_G(N(x))$ of N(x) in G contains an element of G_{σ} . Moreover, $C_G(N(x)) \cap G_{\sigma}$ forms a single conjugacy class of G_{σ} .

(b) Let x and y be elements of G such that the elements xo and yo of GA are conjugate to each other. Then, $C_G(N(x)) \cap G_{\sigma} = C_G(N(y)) \cap G_{\sigma}$.

(c) For $x \in G$, we denote by $C_{GA}(x\sigma)$ the conjugacy class of $x\sigma$ in GA. The correspondence \mathcal{N} from the set of GA-conjugacy classes of $\{x\sigma \mid x \in G\}$ into the set of conjugacy classes of G_{σ} defined by

 $\mathcal{N}(C_{GA}(x\sigma)) = C_G(N(x)) \cap G_{\sigma} \qquad (x \in G)$

is bijective.

(d) $|C_{GA}(x\sigma)||G|^{-1} = |C_G(N(x)) \cap G_{\sigma}||G_{\sigma}|^{-1}$ for all $x \in G$. (For a set S, |S| denotes the number of its elements.)

2. Theorem. Assume that m is not divisible by p. Let χ be a σ -invariant irreducible character of G, and $\tilde{\chi}$ an extension of χ to an irreducible character of GA (see Lemma 1). Then there exists a unique irreducible character ψ_{χ} of G, which depends only on χ and satisfies

$$\tilde{\chi}(x\sigma) = \pm \zeta^a \psi_{\tau}(n(x))$$
 $(x \in G),$

where n(x) is an arbitrary element of $C_G(N(x)) \cap G_{\sigma}$ (see Lemma 2), $\zeta = \exp(2\pi i/m)$, and a is an integer. Moreover, the mapping $\chi \rightarrow \psi_{\chi}$ is a bijection between the set of σ -invariant irreducible characters of G and the set of irreducible characters of G_{σ} . In particular, if char $(k) \neq 2$, all the irreducible characters of G_{σ} may be obtained in this way.

Remark 1. This theorem, and its proof, are valid even if one replace σ with the Frobenius automorphism τ . Using Green's deep results [2], Shintani [3] proved the τ -case without assuming that m is not divisible by p. Our proof is independent of Green's results [2].

3. Put $L = k_{2(n1)}$. We consider that σ acts on $L^{\times} = GL_1(k_{2(n1)})$ and on $\hat{L}^{\times} = \text{Hom}(L^{\times}, \mathbb{C}^{\times})$ by

$$t^{\sigma} = t^{-q}, \qquad u^{\sigma}(t) = u(t^{-q}) \qquad (t \in L^{\times}, u \in \hat{L}^{\times}),$$

where q is the number of elements of k. We denote by \mathcal{F} and $\hat{\mathcal{F}}$ respectively, the set of σ -orbits in L^{\times} and \hat{L}^{\times} . For an element f in \mathcal{F} (or $\hat{\mathcal{F}}$) we denote by d(f) the cardinality of the orbit f. Let \mathcal{P} be the set of partitions, i.e. decreasing sequences $\nu = (\nu_1, \nu_2, \dots, \nu_r)$ of positive integers ν_i . For convention, we consider that \mathcal{P} contains the empty partition ϕ . For $\nu \in \mathcal{P}$, put $|\nu| = \sum_i \nu_i$ if $\nu \neq \phi$, and $|\phi| = 0$. Using the Theorem with m=2 and a parametrization of the irreducible characters of $GL_n(k_2)$ due to J. A. Green [2], we see that the irreducible characters of $U_n(k_2)$ (char $(k) \neq 2$) are naturally parametrized by the set of functions $\hat{\lambda}: \hat{\mathcal{F}} \to \mathcal{P}$, which satisfies

$$\sum_{f\in\hat{G}} |\hat{\lambda}(f)| d(f) = n.$$

Remark 2. It is known [1] and easy to see that the conjugacy classes of $U_n(k_2)$ are naturally parametrized by the set of functions $\lambda: \mathcal{F} \to \mathcal{P}$, which satisfies

$$\sum_{f\in\mathcal{F}} |\lambda(f)| d(f) = n.$$

References

- V. Ennola: On the characters of the finite unitary groups. Ann. Acad. Scient. Fenn. A. I, No., 323 (1963).
- [2] J. A. Green: The characters of the finite general linear groups. Trans. Amer. Math. Soc., 80, 402-447 (1955).
- [3] T. Shintani: Two remarks on irreducible characters of finite general linear groups (to appear in Jour. Math. Soc. Japan.).

97