25. Putcha's Problem on Maximal Cancellative Subsemigroups

By Takayuki TAMURA University of California, Davis, California, 95616, U.S.A.

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1976)

1. Introduction. Let S be a commutative archimedean semigroup without idempotent ([1], [3], [5]). M. S. Putcha asked the following question in his recent paper [4].

Is every maximal cancellative subsemigroup of S necessarily archimedean?

In this paper the author negatively answers this question by exhibiting a counter example and discusses a further problem. Throughout this paper, Z denotes the set of integers, Z_+ the set of positive integers and Z_+^o the set of nonnegative integers. Let S be a commutative semigroup and let a be any element of S. Define ρ_a on S by

 $x\rho_a y$ if and only if $a^m x = a^n y$ for some $m, n \in \mathbb{Z}_+$. Then ρ_a is a congruence on S, and if S is a commutative archimedean semigroup without idempotent, then S/ρ_a is a group [5], [6]. Let G_a $=S/\rho_a$. G_a is called the *structure group* of S with respect to a. A commutative semigroup S is called power joined if, for any $a, b \in S$, there are $m, n \in \mathbb{Z}_+$ such that $a^m = b^n$.

Putcha's question is affirmative if G_a is torsion. It is more strongly stated as follows:

Proposition 1.1. Let S be a commutative archimedean semigroup without idempotent. If a structure group of S is torsion, then every subsemigroup of S is archimedean.

Proof. According to [2], S is power joined if and only if G_a is torsion for some $a \in S$, equivalently for all $a \in S$. Every subsemigroup of S is power joined, hence archimedean.

Accordingly Putcha's question is interesting only in the case G_a is not torsion.

2. Counter example. Let G be the free abelian group of rank $r \ge 2$, where r may be infinite, but we assume $2 \le r \le \aleph_0$ for our convenience. However this restriction will be easily removed later. Every element λ of G will be expressed by

 $\lambda = (\lambda_1, \dots, \lambda_i, \dots)$ or (λ_i)

where $\lambda_i \in Z$ for all $i \in Z_+$, but if $r = \aleph_0$, only a finite number of λ_i 's are not zero. The operation is defined by $(\lambda_i) + (\mu_i) = (\lambda_i + \mu_i)$ and the identity is $\mathbf{0} = (0)$. Define subsemigroups H and E of G by

T. TAMURA

[Vol. 52,

$$H = \{\lambda \in G : \lambda_i \ge 0 \quad \text{for all } i \in Z_+\}, \ E = \{\lambda \in H : \lambda_{2i+1} = 0 \quad \text{for all } i \in Z_+^0\}.$$

For each $\lambda = (\lambda_i)$ of G , we define $\|\lambda\|$ by $\|\lambda\| = \sum_{\lambda \in I} \lambda_i, \quad \|\mathbf{0}\| = 0.$

Let $S=H\cup(G\times Z_+^0)$ be the set union of the set H and the product set $G\times Z_+^0$. Elements of H are denoted by λ, μ, \cdots ; those of $G\times Z_+^0$ are denoted by $(\lambda, x), (\mu, y), \cdots$ where $\lambda, \mu \in G, x, y \in Z_+^0$. Define the commutative binary operation in S as follows:

$$\begin{split} \lambda \cdot \mu = \begin{cases} (\lambda + \mu, 3) & \lambda, \mu \in H \setminus E. \\ (\lambda + \mu, \|\mu\| + 2) & \lambda \in H \setminus E, \mu \in E. \\ (\lambda + \mu, \|\lambda + \mu\| + 1) & \lambda, \mu \in E. \end{cases} \\ \lambda \cdot (\mu, x) = \begin{cases} (\lambda + \mu, x + 2) & \lambda \in H \setminus E, \mu \in G. \\ (\lambda + \mu, x + \|\lambda\| + 1) & \lambda \in E, \mu \in G. \end{cases} \\ (\lambda, x) \cdot (\mu, y) = & (\lambda + \mu, x + y + 1) & \lambda, \mu \in G. \end{cases} \end{split}$$

The subsemigroup $G \times Z_+^0$ of S is isomorphic to the direct product of G and Z_+ under addition, and hence $G \times Z_+$ is archimedean. Furthermore S is an inflation [1] of $G \times Z_+^0$ determined by the map $\varphi: H \to G \times Z_+^0$ where φ is defined by

$$arphi(\lambda) = egin{cases} (\lambda,1) & ext{if } \lambda \in H ackslash E \ (\lambda, \|\lambda\|) & ext{if } \lambda \in E. \end{cases}$$

Therefore S is a commutative archimedean semigroup. Since $G \times Z_+^0$ has no idempotent, S has no idempotent.

Let

$$T = H \cup \{(\lambda, x) : \lambda \in H \setminus E, x \ge 2\} \cup \{(\lambda, \|\lambda\| + x) : \lambda \in E, x \ge 1\}.$$

From the definition of multiplication in S, we see that T is a subsemigroup of S. Let $L=T\setminus H$. L is a cancellative ideal of T. It is easily seen that $\lambda \cdot (\nu, x) = \mu \cdot (\nu, x)$ implies $\lambda = \mu$. The other cases of cancellation of T is shown by cancellation of L. Therefore T is cancellative.

Let $\theta: S \rightarrow G$ be the homomorphism defined by

$$\begin{array}{ll} \theta(\lambda) = \lambda & \text{if } \lambda \in H \\ \theta(\lambda, x) = \lambda & \text{if } (\lambda, x) \in G \times Z_+^{\circ}. \end{array}$$

Note that θ is nothing but $S \rightarrow G_0 = S/\rho_0$.

Let M be a cancellative subsemigroup of S properly containing T. Suppose M is archimedean. Then $\theta(M)$ is archimedean. Since the subsemigroup H of G contains the identity **0** of G, $\theta(H)$ contains **0**, and hence $\theta(M)$ contains **0**. It is, therefore, a subgroup of G which contains the subsemigroup H of G. But $G = \theta(M)$ since G is generated by H. Consider $\lambda \in G$ defined by

$$\lambda_i = egin{cases} -1 & i=1 \ 0 & i
eq 1. \end{cases}$$

Then $(\lambda, x) \in M$ for some $x \in Z_+^0$. Choose $\nu \in E$ such that $\|\nu\| = x+2$. Let $\mu = -\lambda + \nu$. Then $\mu \in H \setminus E$, so $\mu \in T$ and $\mu \cdot (\lambda, x) = (\lambda + \mu, x + 2) = (\nu, ||\nu||),$

so that, $(\nu, ||\nu||) \in M$. On the other hand,

 $\nu \cdot (\nu, \|\nu\|) = (2\nu, 2 \|\nu\| + 1) = (2\nu, \|2\nu\| + 1) = \nu \cdot \nu$

but $(\nu, \|\nu\|) \neq \nu$. This contradicts cancellation of M. Hence no cancellative subsemigroup which properly contains T is archimedean.

We can remove the restriction " $\leq \aleph_0$ ". Let G_1 be the free abelian group of rank $> \aleph_0$. The above G is regarded as a subgroup of G_1 . Let H and E be the subsemigroups of G defined as before and let $S_1 = H \cup (G_1 \times Z_+^0)$; the operation in S_1 is defined in the same way as in Sexcept replacing G by G_1 . T is exactly the same as before and $\theta_1 : S_1 \rightarrow G_1$ is similarly defined as θ . If M_1 is a cancellative subsemigroup of S_1 and if $T \subseteq M_1 \subset S$, then $G_1 = \theta_1(M_1)$ and we have the same conclusion.

3. Remark. Let *D* be a commutative semigroup. If there is an element *a* of *D* such that, for every $b \in D$, $a^m = bc$ for some $c \in D$ and some $m \in Z_+$, then *D* is called subarchimedean. Let *G* be the free abelian group of rank $r, 2 \leq r \leq \aleph_0$. In this section, we note that the *T* in Section 2 is contained in a subarchimedean maximal cancellative subsemigroup M_0 of *S*. Let $A = \{\lambda \in G : \lambda_{2i} = 0 \text{ for all } i \in Z_+\}, F = \{\lambda \in A : \|\lambda\| \geq 0\}.$

(3.1) Let X be a subsemigroup of A such that $F \subsetneq X \subset A$. Then X contains an element $\nu \in G$ such that $\nu \neq 0$ and $\nu_{2i+1} \leq 0$ for all $i \in \mathbb{Z}_+^0$.

As the dual of A, we define $B = \{\lambda \in G : \lambda_{2i+1} = 0 \text{ for all } i \in \mathbb{Z}_+^0\}$. Then G is the direct sum of A and B : G = A + B. Let $\lambda \in G$. The projections of λ into A and B are denoted by λ_A and λ_B respectively: $\lambda = \lambda_A + \lambda_B$. Now define $\tilde{H} = \{\lambda \in G : \lambda_A \in F\}$. E and H were defined in Section 2 and \bar{E} denotes the subgroup of G generated by E. Then $H \subset \tilde{H}$ and $\tilde{H} = F + B$.

Let

$$F_0 = \{\lambda \in F : \|\lambda\| = 0\}, \qquad F_+ = \{\lambda \in F : \|\lambda\| > 0\}, \\ \tilde{H}_0 = \{\lambda \in G : \lambda_A \in F_0\}, \qquad \tilde{H}_+ = \{\lambda \in G : \lambda_A \in F_+\}.$$

 F_0 is a subgroup of F, and F_+ is an ideal of F; $H \setminus E$ is an ideal of H; $\tilde{H} \setminus E$ is an ideal of \tilde{H} .

(3.2) Let $\lambda, \mu \in \tilde{H}$. Then $\lambda + \mu \in \tilde{H}_0$ if and only if $\lambda, \mu \in \tilde{H}_0$.

Further, consider the subsets Y of $\tilde{H}_+ \setminus H$ satisfying that $\lambda + \mu \notin H$ for every distinct $\lambda, \mu \in Y$. Let C be a maximal such set Y. Such a Y exists. For example, choose $\lambda \in \tilde{H}_+ \setminus H$ with $\lambda_2 < 0$, and then define $Y = \{m\lambda : m \in \mathbb{Z}_+\}$. Existence of maximal one is due to Zorn's lemma.

Let $D = \tilde{H}_+ \setminus (H \cup C)$, i.e., $\tilde{H}_+ \setminus H = C \cup D$. Now define subsets of S as follows:

$$T_{C} = \{(\lambda, x) : \lambda \in C, x \ge 0\}, \qquad T_{D} = \{(\lambda, x) : \lambda \in D, x \ge 1\}, \\ T_{F_{0}} = \{(\lambda, x) : \lambda \in \tilde{H}_{0} \setminus H, x \ge ||\lambda||\}.$$

For our convenience the sets appearing in Section 2 are denoted by

T. TAMURA

[Vol. 52,

 $T_1 = \{(\lambda, x) : \lambda \in H \setminus E, x \ge 2\}, \qquad T_2 = \{(\lambda, x) : \lambda \in E, x \ge \|\lambda\| + 1\}.$ Recall $T = H \cup T_1 \cup T_2$. Finally we define M_0 by $M_0 = T \cup T_C \cup T_D \cup T_{F_0}.$

Then we can show that M_0 is a maximal cancellative subsemigroup of S and M_0 is subarchimedean.

The S given in Sections 2 and 3 has also a maximal cancellative subsemigroup M_2 which is archimedean, and at the same time an ideal of S. $M_2 = \{(\lambda, x) : \lambda \in G, x \in Z_+^0\}$.

The following problems are raised.

Problem 1. Assume that S is a commutative archimedean semigroup without idempotent and a structure group of S is isomorphic to Z. Then is Putcha's question affirmative?

Problem 2. If S is a commutative archimedean semigroup without idempotent, is every maximal cancellative subsemigroup necessarily subarchimedean? Does there exist a maximal cancellative subsemigroup which is archimedean?

References

- A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups, Vol. 1. Amer. Math. Soc., Providence, Rhode Island (1961).
- [2] R. G. Levin and T. Tamura: Note on commutative power joined semigroups. Pacific Jour. of Math., 35, 673-679 (1970).
- [3] M. Petrich: Introduction to Semigroups. Charles E. Merrill Publishing Company (1973).
- [4] ——: Maximal cancellative subsemigroups and cancellative congruences. Proc. Amer. Math. Soc., 47, 49-52 (1975).
- [5] T. Tamura: Commutative nonpotent archimedean semigroup with cancellation law. Jour. of Gakugei, Tokushima Univ., 8, 5-11 (1957).
- [6] ——: Construction of trees and commutative archimedean semigroups. Math. Nachrt., 36, 257-287 (1968).