50. On an Explicit Formula for Class. 1 "Whittaker Functions" on GL ${ }_{n}$ over $\mathfrak{\beta}$-adic Fields

By Takuro Shintani
(Comm. by Kunihiko Kodaira, m. J. A., April 12, 1976)

0. "Whittaker functions" on \mathfrak{B}-adic linear groups have been studied by several authors (see e.g. [2] and [3]). In this note, we present an explicit formula for the class-1 "Whittaker functions" on $G L_{n}(k)$, where k is a non archimedean local field.
1. Let k be a finite extension of the p-adic fied \boldsymbol{Q}_{p} and let \mathcal{O} be the ring of integers of k. Choose a generator π of the maximal ideal of \mathcal{O} and denote by q the cardinality of the residue class field of k. Set $G=G L_{n}(k)$ and $K=G L_{n}(\mathcal{O})$. Then K is a maximal compact open subgroup of G. The invariant measure of G is normalized so that the total volume of K is equal to 1 . Denote by $L_{0}(G, K)$ the space of complex valued compactly-supported bi- K-invariant functions on G. Then $L_{0}(G, K)$ is a commutative subalgebra of the group ring $L^{1}(G)$ of G. We denote by N the group of $n \times n$ upper triangular unipotent matrices with entries in k. Choose a character ψ of the additive group of k which is trivial on \mathcal{O} but not trivial on $\pi^{-1} \mathcal{O}$. Denote by the same letter ψ the character of N given by $\psi(x)=\prod_{i=1}^{n-1} \psi\left(x_{i i+1}\right)$, where $x_{i i+1}$ is the $(i, i+1)$ entry of x.

For each algebra homomorphism λ of $L_{0}(G, K)$ into C, it is known that there uniquely exists a function $W_{\lambda}(g)$ on G which satisfies the following conditions (1), (2) and (3).

$$
\begin{equation*}
W_{\lambda}(x g)=\psi(x) W_{\lambda}(g) \quad(\forall x \in N), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{G} W_{\lambda}(g x) \varphi(x) d x=\lambda(\varphi) W_{\lambda}(g) \quad\left(\forall \varphi \in L_{0}(G, K)\right), \tag{2}
\end{equation*}
$$

$$
W_{\lambda}(1)=1 .
$$

The function W_{λ} is said to be the class- 1 "Whittaker function" on G associated with the homomorphism λ of $L_{0}(G, K)$ into C.

For each n-tuple $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ of integers, we denote by π^{f} the diagonal matrix whose i-th diagonal entry is $\pi^{f_{i}}(i=1, \cdots, n)$. Set $w_{\lambda}(f)=W_{\lambda}\left(\pi^{f}\right)$. It is known that $G=\bigcup_{f \in Z^{n}} N \pi^{f} K$ (disjoint union). To evaluate W_{λ} on G, it is sufficient to know $w_{\lambda}(f)$ for all $f \in \boldsymbol{Z}^{n}$, since W_{λ} is right K-invariant and satisfies (1). Since the conductor of ψ is \mathcal{O}, it follows easily from (1) that $w_{2}(f)$ is zero unless $f_{1} \geq f_{2} \geq \cdots \geq f_{n}$.

For $i=1,2, \cdots, n$, let φ_{i} be the characteristic function of the double
K-coset $K \pi^{f^{t}} K$, where $f^{i}=(\overbrace{1,1, \cdots, 1}^{i}, 0,0, \cdots, 0)$. It is known that $L_{0}(G, K)$ is isomorphic to the polynomial ring generated by $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$. Set $\lambda_{i}=\lambda\left(\varphi_{i}\right),(i=1,2, \cdots, n)$ and choose n complex numbers μ_{1}, μ_{2}, \cdots, μ_{n} so that the i-th elementary symmetric function of μ_{j} 's is equal to $q^{i(i-1) / 2} \lambda_{i}(i=1,2, \cdots, n)$. Let μ be the diagonal matrix whose i-th diagonal entry is μ_{i} for $i=1,2, \cdots, n$. Since $\lambda_{n} \neq 0, \mu \in G L_{n}(C)$.

For $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right) \in \boldsymbol{Z}^{n}$, denote by χ_{f} the character of the irreducible representation of $G L_{n}(C)$ with the highest weight f, if $f_{1} \geq f_{2}$ $\geq \cdots \geq f_{n}$. Unless $f_{1} \geq f_{2} \geq \cdots \geq f_{n}$, set $\chi_{f}=0$.

Theorem. Notations and assumptions being as above, we have,
where

$$
W_{\lambda}\left(\pi^{f}\right)=q_{i} \sum_{i=1}^{n}(i-n) f_{i} \chi_{f}(\mu) \quad\left(f \in Z^{n}\right),
$$

$$
\chi_{f}(\mu)=\left\{\left.\begin{array}{llll}
\mu_{1}^{f_{1}+n-1} & \mu_{2}^{f_{1}+n-1} & \cdots & \mu_{n}^{f_{1}+n-1} \tag{4}\\
\vdots & \vdots & & \vdots \\
\frac{\mu_{1}^{f_{n}}}{} & \mu_{2}^{f_{n}} & \cdots & \mu_{n}^{f_{n}}
\end{array} \right\rvert\,, \quad \text { if } f_{1} \geq \cdots \geq f_{n}\right.
$$

Proof. We first prove the following sublemma:
Sublemma. (See Lemma 11 of [4].) Set $N_{\mathcal{O}}=N \cap K$ and denote by I_{i} the set of all the n-tuples $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right)$ of non-negative integers which satisfy $\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n}=i$. Further, set $N_{\mathcal{O}}(\varepsilon)=N_{\mathcal{O}} \cap \pi^{\varepsilon} K \pi^{-\varepsilon}$. Then we have

$$
\begin{equation*}
K \pi^{f^{t}} K=\bigcup_{\bullet \in I_{i}} \bigcup_{x \in N} \bigcup_{\mathcal{O}^{/ N} \mathcal{O}^{(0)}} x \pi^{\bullet} K \quad \text { (disjoint union). } \tag{5}
\end{equation*}
$$

Proof. Set $e_{i}=(\underbrace{0,0, \cdots, 0,1,1, \cdots, 1}_{n-i})$. Denote by B the subgroup of K consisting of all matrices in K whose subdiagonal entries are all in $\pi \mathcal{O}$. It is known (see [1]) that $K=\bigcup_{w \in W} B w B$ (disjoint union), where W is the group of all permutation matrices in K. Since $\left(\pi^{e_{i}}\right)^{-1} B\left(\pi^{e_{i}}\right) \in K \quad$ and $B w \pi^{e_{i}} w^{-1} \subset \bigcup_{s \in I_{k}} N_{\mathcal{O}} \pi^{e} K(\forall w \in W), \quad K \pi^{f i} K=K \pi^{e_{i}} K$ $\subset \bigcup_{w \in W} B w \pi^{e} K \subset \bigcup_{\in \in I_{i}} N O \pi^{\bullet} K$. Thus the left side of (5) is a subset of the right. Since the inverse inclusion relation is obvious, we obtain the sublemma.

It follows from the sublemma that if $f=\left(f_{1}, f_{2}, \cdots, f_{n}\right) \in Z^{n}$ and $f_{1} \geq f_{2} \geq \cdots \geq f_{n}$,

$$
\begin{aligned}
\lambda_{i} w_{\lambda}(f) & =\int_{G} W_{\lambda}\left(\pi^{f} x\right) \varphi_{i}(x) d x=\sum_{i \in I_{i}}\left|N_{\mathcal{O}} / N_{\mathcal{O}}(\varepsilon)\right| w_{\lambda}(f+\varepsilon) \\
& =q^{i n-i(i-1) / 2} \sum_{i \in I_{i}} q^{-\sum_{j=1}^{n}{ }_{j}^{\varepsilon j j}} w_{\lambda}(f+\varepsilon)
\end{aligned}
$$

Set $\tilde{w}_{\lambda}(f)=q_{i=1}^{\sum_{i=1}^{n}(n-i) f_{i}} w_{\lambda}(f)$. We have shown that the function \tilde{w}_{λ}
on Z^{n} satisfies the following system of difference equations:
(6)

$$
\left\{\begin{array}{l}
\text { If } f_{1} \geq f_{2} \geq \cdots \geq f_{n}, \\
q^{i(i-1) / 2} \lambda_{i} \tilde{w}_{\lambda}(f)=\sum_{6 \in I_{i}} \tilde{w}_{\lambda}(f+\varepsilon) \quad(1 \leq i \leq n) \\
\text { If } f=\left(f_{1}, f_{2}, \cdots, f_{n}\right) \text { does not satisfy the inequalities } \\
\quad f_{1} \geq f_{2} \geq \cdots \geq f_{n}, \tilde{w}_{\lambda}(f)=0
\end{array}\right.
$$

On the other hand, it is known (see e.g. [5]) that the function $\chi_{f}(\mu)$ given by (4), satisfies the following system of equations:

$$
\chi_{f i}(\mu) \chi_{f}(\mu)=\sum_{e \in I_{i}} \chi_{f+\varepsilon}(\mu) \quad \text { if } \quad f_{1} \geq f_{2} \geq \cdots \geq f_{n}
$$

Our definition of μ implies $\chi_{f i}(\mu)=q^{i(i-1) / 2} \lambda_{i}$. Thus, as functions on Z^{n}, $\tilde{w}_{\lambda}(f)$ and $\chi_{f}(\mu)$ satisfy the same system of difference equations (6). However, the solution of the equation system (6) is unique, up to a constant factor. Since $\tilde{w}_{\lambda}(0)=\chi_{0}(\mu)=1$, we have $\tilde{w}_{\lambda}(f)=\chi_{f}(\mu)$.

References

[1] Iwahori-Matsumoto: On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups. Publ. Math. I. H. E. S. $\mathrm{N}^{\circ} 25$.
[2] H. Jacquet: Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. France, 95, 243-309 (1967).
[3] J. Shalika: The multiplicity one theorem for $G L_{n}$. Ann. Math., 100, 171193 (1974).
[4] T. Tamagawa: On the zeta function of a division algebra. Ann. Math., 77, 387-405 (1963).
[5] H. Weyl: Classical Groups.

