58. A Family of Pseudo-Differential Operators and a Stability Theorem for the Friedrichs Scheme

By Zen'ichirô KOSHIBA*) and Hitoshi KUMANO-GO**)

(Comm. by Kôsaku Yosida, M. J. A., May 12, 1976)

§0. Introduction. In this note we shall study an algebra of a family of pseudo-differential operators and try to apply this theory to the stability theory of the Friedrichs scheme. The class $\{S_{\lambda_k}^m\}$ of pseudo-differential operators is defined by a family of basic weight functions $\lambda_k(\xi)$ ($0 \le k \le 1$) as in [4], [5] and [2].

For the application to the stability theory we have to define two subclasses $\{\mathring{S}_{\lambda_{h}}^{m}\}$ and $\{\widetilde{S}_{\lambda_{h}}^{m}\}$ of $\{S_{\lambda_{h}}^{m}\}$ as the sets of all the symbols $p_{h}(x,\xi)$ such that $h^{-1}p_{h} \in \{S_{\lambda_{h}}^{m+1}\}$ and $h^{-1}\partial_{\xi}^{\alpha}p_{h} \in \{S_{\lambda_{h}}^{m+1-|\alpha|}\}$ for any $\alpha \neq 0$, respectively. We have also to derive 'the principle of cutting off' a symbol $p_{h}(x,\xi)$ of class $\{S_{\lambda_{h}}^{m}\}$ by $\chi(\lambda_{h}(\xi))$ (or $\varphi(\zeta_{h}(\xi))$) (see Theorem 1.9). Then, we can treat difference schemes as a family of pseudo-differential operators, and prove a stability theorem of the Friedrichs schemes for a diagonalizable hyperbolic system. We note that this theorem is regarded as the general form of the Yamaguti-Nogi-Vaillancourt stability theorem in [7], [8] and [9], and note that the theorem holds without the restriction on the behavior of symbols $p_{h}(x, \xi)$ at $x = \infty$.

§1. A family of pseudo-differential operators.

Definition 1.1. A family $\{\lambda_h(\xi)\}_{0 < h < 1}$ of real valued C^{∞} -functions in \mathbb{R}^n is called a basic weight function, when there exist positive constants A_0, A_{α} (independent of 0 < h < 1) such that

(1.1) $1 \leq \lambda_{\hbar}(\xi) \leq A_0 \langle \xi \rangle, \ |\lambda_{\hbar}^{(\alpha)}(\xi)| \leq A_{\alpha} \lambda_{\hbar}(\xi)^{1-|\alpha|}$ for any α , where $\langle \xi \rangle = \{1+|\xi|^2\}^{1/2}, \ \lambda_{\hbar}^{(\alpha)} = \partial_{\xi}^{\alpha} \lambda_{\hbar}$ for $\alpha = (\alpha_1, \dots, \alpha_n)$.

Example. An important example of this note is defined by (1.2) $\lambda_h(\xi) = \langle \zeta_h(\xi) \rangle$, $\zeta_h(\xi) = (h^{-1} \sin h\xi_1, \dots, h^{-1} \sin h\xi_n)$ (see [4], [5]).

Definition 1.2. i) A family $\{p_h\}$ of C^{∞} -symbols $p_h(x, \xi)$ in $\mathbb{R}^n_x \times \mathbb{R}^n_{\xi}$ $(0 \le h \le 1)$ is called of class $\{S^m_{\lambda_h}\}$ $(-\infty \le m \le \infty)$, when there exist constants $C_{\alpha,\beta}$ (independent of $0 \le h \le 1$) such that

(1.3) $|p_{h(\beta)}^{(\alpha)}(x,\xi)| \leq C_{\alpha,\beta}\lambda_{h}(\xi)^{m-|\alpha|} \quad \text{for any } \alpha,\beta,$ where $p_{h(\beta)}^{(\alpha)} = \partial_{\xi}^{\alpha} D_{x}^{\beta} p_{h} \quad (D_{x} = -i\partial_{x}).$ We set $\{S_{\lambda h}^{-\infty}\} = \bigcap_{m} \{S_{\lambda h}^{m}\}$ and $\{S_{\lambda h}^{\infty}\} = \bigcup_{m} \{S_{\lambda h}^{m}\}.$

ii) A family $\{P_h\}$ of linear operators $P_h: S \to S$ is called a pseudodifferential operator of class $\{S_{\lambda}^m\}$ with symbol $p_h(x, \xi)$, when there

^{*)} Department of Mathematics, Shinshû University.

^{**)} Department of Mathematics, Osaka University.

exists a symbol $p_h(x,\xi)$ of class $\{S_{\lambda h}^m\}$ such that

(1.4)
$$P_h u(x) = \int e^{ix \cdot \xi} p_h(x,\xi) \hat{u}(\xi) d\xi \quad \text{for } u \in \mathcal{S},$$

where $d\xi = (2\pi)^{-n}d\xi$, S denotes the Schwartz space, and $\hat{u}(\xi)$ $= \int e^{-ix \cdot \xi} u(x) dx. \quad \text{We denote it by } P_h = p_h(X, D_x) \in \{S_{\lambda_h}^m\}, \text{ or } \sigma(P_h)(x, \xi)$ $= p_h(x, \xi).$

Example. $\lambda_h(\xi)^s \in \{S_{\lambda_h}^s\}$ for any real s, $\cos h\xi_j$, $\sin h\xi_j \in \{S_{\lambda_h}^0\}$. For $p(x,\xi) \in S^m_{\langle \xi \rangle}, \ p_h(x,\xi) = p(x,\zeta_h(\xi)) \in \{S^m_{\lambda h}\} \text{ (see [5]).}$

We have the following series of theorems (see [5]):

Theorem 1.3. i) Let $P_h = p_h(X, D_x) \in \{S_{hh}^m\}$ and let define the formal adjoint P_h^* by

 $(P_h u, v) = (u, P_h^* v)$ for $u, v \in S$. (1.5)Then, $P_h^* \in \{S_{\lambda_h}^m\}$ and $\sigma(P_h^*) = p_h^*(x, \xi)$ has the asymptotic expansion

(1.6)
$$p_{\hbar}^{*}(x,\xi) \sim \sum_{\alpha} \frac{(-1)^{\alpha}}{\alpha !} \frac{\overline{p_{(\alpha)}^{(\alpha)}(x,\xi)}}{p_{(\alpha)}^{(\alpha)}(x,\xi)}$$

in the sense $p_h^* - \sum_{|\alpha| \leq N} \frac{(-1)^{|\alpha|}}{\alpha!} \overline{p_{(\alpha)}^{(\alpha)}} \in \{S_{\lambda_h}^{m-N}\}$ for any N.

ii) Let $P_{j,h} = p_{j,h}(X, D_x) \in \{S_{\lambda_h}^{m_j}\}$ (j=1, 2), and set $P_h = P_{1,h}P_{2,h}$. Then, $P_h \in \{S_{\lambda_h}^{m_1+m_2}\}$ and $\sigma(P_h) = p_h(x, \xi)$ has the asymptotic expansion

(1.7)
$$p_{h}(x,\xi) \sim \sum_{\alpha} \frac{1}{\alpha !} p_{1,h}^{(\alpha)}(x,\xi) p_{2,h(\alpha)}(x,\xi).$$

By means of the relation (1.5) for $u \in S'$ and $v \in S$, we can extend $P_h: \mathcal{S} \to \mathcal{S}$ to the mapping $P_h: \mathcal{S}' \to \mathcal{S}'$ by Theorem 1.3-i).

Definition 1.4. We define the Sobolev space $H_{\lambda_{h,s}}$ by $H_{\lambda_{h,s}} = \{u \in \mathcal{S}';$ $\lambda_h(\xi)^s \hat{u}(\xi) \in L^2(\mathbb{R}^n_{\xi})$ with s-norm $\|u\|_{\lambda_h,s} = \|\lambda_h^s \hat{u}\|_{L^2}$.

Theorem 1.5. For $P_h \in \{S_{i_h}^m\}$ we have for constants C_s and l_s (1.8) $\|P_h u\|_{\lambda_h,s} \leq (C_s |p_h|_{l_s}^{(m)}) \|u\|_{\lambda_h,s+m} \quad for \ u \in H_{\lambda_h,s+m} .$ Here, $|p_h|_{l}^{(m)}$ are semi-norms defined by

 $|p_{\lambda}|_{l}^{(m)} = \underset{|\alpha+\beta|\leq l}{\operatorname{Max}} \sup_{(x,\xi)} \{|p_{\lambda(\beta)}^{(\alpha)}(x,\xi)|/\lambda_{\lambda}(\xi)^{m-|\alpha|}\}, \qquad l=0,1,\cdots.$ (1.9)Let $q(\sigma)$ ($\in C_o^{\infty}(\mathbb{R}^n)$) be an even function such that $q(\sigma) \ge 0$ and

 $q(\sigma)^2 d\sigma = 1$. For $p_h(x,\xi) \in \{S_{\lambda_h}^m\}$ we define a double symbol $q(\xi, x', \xi')$ by $q(\xi, x', \xi') = \int F(\xi, \zeta) p(x', \zeta) F(\xi', \zeta) d\zeta$, where $F(\xi, \zeta) = q((\zeta - \xi) / \lambda_h(\xi)^{1/2})$ $imes \lambda_h(\xi)^{-n/4}$, and define the Friedrichs part $P_{F,h}$ of $P_h = p_h(x, D_x)$ by $\widehat{P_{F,h}u}(\xi) = \int \mathrm{e}^{-ix'\cdot\xi} \left\{ \int \mathrm{e}^{ix'\cdot\xi'} q(\xi, x', \xi') \hat{u}(\xi') d\xi' \right\} dx' \qquad \text{for } u \in \mathcal{S}.$ (1.10)

Theorem 1.6. Let $P_h = p_h(X, D_x) \in \{S_{i_h}^m\}$. Then, we have (1.11) $P_{F,h} \in \{S_{\lambda_h}^m\}, \qquad p_{F,h}(x,\xi) - p_h(x,\xi) \in \{S_{\lambda_h}^{m-1}\}.$ If $P_h = p_h(X, D_x)$ ($\in \{S_{i_h}^m\}$) is an $l \times l$ matrix and $p_h(x, \xi)$ is hermitian symmetric, then we have

 $(P_{F,b}u,v) = (u, P_{F,b}v) \quad for \ u, v \in \mathcal{S}.$ (1.12)

Furthermore, if $p_h(x,\xi) \ge c_o \lambda_h(\xi)^m I$ for a real c_o , then we have (1.13) $(P_{F,h}u, u) \ge c_o ||u||_{\lambda_h,m/2}^2$ for $u \in \mathcal{S}$ (see [6], [3], [5]).

Definition 1.7. i) We say that $p_h(x,\xi) \ (\in \{S_{\lambda_h}^m\})$ belongs to a class $\{\mathring{S}_{\lambda_h}^m\}$, when $h^{-1}p_h \in \{S_{\lambda_h}^{m+1}\}$, and say that $p_h(x,\xi) \ (\in \{S_{\lambda_h}^m\})$ belongs to a class $\{\widetilde{S}_{\lambda_h}^m\}$, when $h^{-1}p_h^{(\alpha)} \in \{S_{\lambda_h}^{m+1-|\alpha|}\}$ for any $\alpha \neq 0$.

Example. sin $h\xi_j \in \{\mathring{S}^{0}_{\lambda_h}\}, \cos h\xi_j \in \{\widetilde{S}^{0}_{\lambda_h}\}, p(x,h\xi) \in \widetilde{S}^{0}_{\lambda_h} \text{ for } p \in \mathscr{B}^{\infty}(R^{2n}_{x,\xi})$ and $\{\mathring{S}^{m}_{\lambda_h}\} \subset \{\widetilde{S}^{m}_{\lambda_h}\}.$

Theorem 1.8. For $P_{j,h} \in \{\tilde{S}_{\lambda h}^{m_j}\}$ (j=1,2) we have $[P_{1,h}, P_{2,h}] \in \{\tilde{S}_{\lambda h}^{m_1+m_2-1}\}$, and for $P_{1,h} = p_{1,h}(D_x) \in \{\tilde{S}_{\lambda h}^{m_1}\}$ and $P_{2,h} \in \{S_{\lambda h}^{m_2}\}$ have $[P_{1,h}, P_{2,h}] \in \{\tilde{S}_{\lambda h}^{m_1+m_2-1}\}$.

Theorem 1.9 (the principle of cutting off). Let $\chi(t)$ and $\varphi(\xi)$ be $C_{o_i}^{\infty}$ -functions in \mathbb{R}^1 and \mathbb{R}^n , respectively. Then, we have $\chi_h(\xi) = \chi(\lambda_h(\xi))$, $\varphi_h(\xi) = \varphi(\zeta_h(\xi)) \in \{S_{\lambda_h}^{-\infty}\}$. If $p_h(x,\xi) \in \{S_{\lambda_h}^m\}$ (or $\in \{\mathring{S}_{\lambda_h}^m\}$), then we have $\chi_h p_h$, $\varphi_h p_h \in \{S_{\lambda_h}^{-\infty}\}$ (or $\chi_h p_h$, $\varphi_h p_h \in \mathring{S}_{\lambda_h}^{-\infty}$).

Theorem 1.10. Let $P_h = p_h(X, D_x) \in \{S_{\lambda_h}^{m_1}\}$ be an $l \times l$ matrix such that $p_h(x, \xi) \ge 0$, and let $q_h(\xi) \in \{\tilde{S}_{\lambda_h}^{m_2}\}$ be a scalar symbol. Then we have for a constant C

(1.14) $(P_{F,h}q(D_x)^2u, u) \ge -Ch \|u\|_{\lambda_h, m_1/2+m_2}^2 \quad \text{for } u \in \mathcal{S}.$

§2. A stability theorem for the Friedrichs scheme. Consider the hyperbolic system of the form

(2.1) $\begin{cases} Lu = D_t u - p(t, X, D_x) u = 0 & \text{in } [0, T] \times R^n \ (T \ge 0), \\ u|_{t=0} = u_o \in L^2(R^n) & \text{for } u = (u_1, \dots, u_l), \end{cases}$

where $p(t, X, D_x) \in \mathcal{B}_t(S^1_{\langle \xi \rangle})$ on [0, T] (i.e., $p(t, x, \xi)$ is a $S^1_{\langle \xi \rangle}$ -valued C^{\sim} -function of t on [0, T]). We assume that $p(t, x, \xi)$ has the form

(2.2) $p(t, x, \xi) = p_1(t, x, \xi) + p_0(t, x, \xi) \ (p_j \in \mathcal{B}_t(S^j_{\langle \xi \rangle}), \ j=0, 1),$

and that all the eigenvalues $\mu_j(t, x, \xi)$ $(j=1, \dots, l)$ of p_1 are real and for constants μ_o and $M_o > 0$ we have

(2.3) $\max_{(t,x,\xi)} |\mu_j(t,x,\xi)| \leq \mu_o |\xi| \quad \text{on } [0,T] \times R_x^n \times \{|\xi| \geq M_o\} \ (j=1,\cdots,l).$

We also assume that $p_1(t, x, \xi)$ is diagonalizable in the sense: there exists $N(t, x, \xi) \in \mathcal{B}_t(S^0_{\langle \xi \rangle})$ such that

(2.4) $N(t, x, \xi)p_1(t, x, \xi) = \mathcal{D}(t, x, \xi)N(t, x, \xi)$ on $[0, T] \times R_x^n \times \{|\xi| \ge M\}$ and

(2.5)
$$|\det(N(t, x, \xi))| \ge c_o$$
 on $[0, T] \times R_x^n \times \{|\xi| \ge M\}$
for constants $M(\ge M_o)$, $c_o > 0$ and $\mathcal{D} = \begin{pmatrix} \mu_1(t, x, \xi) & 0 \\ & \ddots \\ 0 & & \mu_l(t, x, \xi) \end{pmatrix}$.

For the operator L we define the Friedrichs schemes $S_{\hbar} = S_{\hbar}(t)$ by (2.6) $\sigma(S_{\hbar})(t, x, \xi) = q_{\hbar}(\xi) - i\tau h p_{\hbar}(t, x, \xi)$ for a real fixed τ

$$\left(q_{h}(\xi) = n^{-1} \sum_{j=1}^{n} \cos h\xi_{j}, p_{h}(t, x, \xi) = p(t, x, \zeta_{h}(\xi))\right)$$

Then, applying Theorem 1.6, Theorems 1.8-1.10, we have

No. 5]

Theorem 2.1. Assume $|\tau| \leq (\sqrt{n} \mu_0)^{-1}$. Then, there exist constants C, C'>0 such that we have for $(S_h)^{\nu} = \prod_{j=0}^{\nu-1} S_h(j\tau h)$

 $(2.7) \quad \|S_{h}u\|_{H_{h}}^{2} - \|u\|_{H_{h}}^{2} \leq Ch \|u\|_{L^{2}}^{2}, \quad \|(S_{h})^{\nu}u\|_{L^{2}} \leq C' \|u\|_{L^{2}} \quad (0 \leq \tau h\nu \leq T).$ Here, $\|u\|_{H_{h}}^{2} = (H_{h}u, u) \text{ and } H_{h} \text{ is the Friedrichs part of } \tilde{H}_{h} \text{ defined by}$ $\sigma(\tilde{H}_{h})(t, x, \xi) = N^{*}(t, x, \zeta_{h}(\xi))N(t, x, \zeta_{h}(\xi))(1 - \varphi_{h}(\xi))^{2} + \varphi_{h}(\xi)I.$

The detailed proof will be published elsewhere.

References

- [1] A. P. Calderón and R. Vaillancourt: A class of bounded pseudo-differential operators. Proc. Nat. Acad. Sci. USA, **69**, 1185–1187 (1972).
- [2] L. S. Frank: Algèbre des opérateurs aux différences finies. Israel J. Math., 13, 24-55 (1972).
- [3] K. O. Friedrichs: Pseudo-Differential Operators. Lecture Notes, Courant Inst. Math. Sci., New York Univ. (1968).
- [4] H. Kumano-go: Pseudo-differential operators and the uniqueness of the Cauchy problem. Comm. Pure Appl. Math., 22, 73-129 (1969).
- [5] H. Kumano-go: Pseudo-Differential Operators. Iwanami Shoten, Tokyo (1974) (in Japanese).
- [6] P. D. Lax and L. Nirenberg: On stability for difference schemes: a sharp form of Gårding's inequality. Comm. Pure Appl. Math., 19, 473-492 (1966).
- [7] R. Vaillancourt: A strong form of Yamaguti and Nogi's stability theorem for Friedrichs' scheme. Publ. Res. Inst. Math. Sci., 5, 113-117 (1969).
- [8] M. Yamaguti: On the pseudo-difference schemes. Proc. Internat. Conf. on Functional Analysis and Related Topics, 161-170 (Tokyo, 1969), Univ. of Tokyo Press, Tokyo (1970).
- [9] M. Yamaguti and T. Nogi: An algebra of pseudo difference schemes and its application. Publ. Res. Inst. Math. Sci., Ser., A 3, 151-166 (1967).