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On the Singularities o the Riemann Functions

o Mixed Problems for the Wave Equation
in Plane.Stratified Media. I

By Mutsuhide MATSUMURA
Faculty of Science, Tokyo University of Education

(Communicated by K.Ssaku YOSIDA, M. $.A., June 8, 1976)

1. Introduction. The study on the singularities o the unda-
mental solutions (or Riemann functions) of mixed initial boundary value
problems or linear hyperbolic equation with constant coefficients in a
quarter space has been developed primarily by Duff [2] and afterward
by Deakin [1], Matsumura [6], Wakabayashi [9], Tsuji [8], especially
by Wakabayashi [10] and [11]. The purpose o this series of notes is
to show that the methods in [6], [8]-[11] are applicable to the study of the
singularities of the Riemann unctions of mixed initial boundary value
problems with a plane interface in a quarter space or the wave equa-
tion. This problem was suggested by Wilcox [12].

2. Formulation of the problem and Lopatinski’s determinant.
R denotes the n-dimensional Euclidean space and denotes its real
dual space with duality (x, x+. +x. Let us write x’= (x,
.., x_), x"=(x,..., x) or the coordinate x=(x, ..., Xn) in R and

’=(, ..., _), " (., ..., ) or the dual coordinate (, ..., n)
in . x will play the role o time variable and x" will play the role
o physical space variable. Let h be a given positive number, and set
9=(x" eR-; Oxh} and 9={x" eR-; xh}. We consider
two wave operators Px(D)=azI--D and P(D)=aA--D with wave
speeds a0 and a0 which govern the wave propagation in 9z and
/2, respectively. Here D-3/i3x and z/=D+... +D. The mixed
problem we will study is

( 1 ) P(D)u(x)=f(x), x>O, O<x<h (i.e. in

(2) P.(D)u(x)=f(x),xl>O,x,>h (i.e. in

( 3 ) u(0, x’)= go(X"), (Du)(O, x")= gl(x’) (initial conditions),
( 4 ) Q(D)u(X)lx=o= ko(x’), x> 0 (boundary condition)

(5)
Bj(D)u(x)lx=---C(D)u(x)lx’=++kj(x’)’x>O’]-l’2

(interface or transmission conditions),
where Q(D), B(D) and C(D) are partial differential operators with
constant coefficients.

Let F, denote the cone {] e ,,; 0, 7a2,1W"I2} and let us denote
by ,+ ,+ (’ + i’) and 27 7(’+ i’) the roots with positive and negative
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imaginary part, respectively, of the equation in 2: P,(’+i’; 2)=0 for

’+i’ e ---il, (=1, 2) where [-’,={’ e n-; (,, 0) e F}. Now we set
B() C +1( )Ro(’+i’)=Q(?)
B() C()’(6)
B(2) Cl(a2)R(’+ i’) Q(2)
B(t) C(:)

and define the Lopatinski’s determinant of the system {P(D), P(D),
Q(D), B(D), C(D), ]=1, 2} or the mixed problem (1)-(5) by

( 7 )
R(’+ i’) R0(’ + i’) exp {ih2(’ + i’)}

R(’+ i’) exp (ih2:(’ + i’)}.
Here Q(2) Q(’ + i’, 2(’ + i’)), B(2) B(’ + i’, 2($’ + i’)) and
C(2) C(’+i’, 2(’+ i’)). Note that Q(27) is the Lopatinski’s de-
terminant of the system {P(D), Q(D)} or the mixed problem in the

BI(2;) C(22)l(exp{ih(2;quarter space (x e Rn ;x0, Xn0} and B(2;) C(2)
is that o the system (P(D),P(D),B(D), C(D), ]--1, 2} for the trans-
mission problem in the space {x e R", x0} with the plane interface
x,=h (see Hersh [3]).

Theorem. The mixed problem (1)-(5) is C (or C)well posed if
and only if the following conditions) are satisfied.
( S ) R(V’) 0, V (1, 0..., 0),
(9) Ro(’--iO’)=Ro($--iy,, ...,)0 for any ’ - and
where R is the principal part of Ro (See Sakamoto [7]).

Making use o the Tarski-Seidenberg theorem, we can deduce from
(9) that the ollowing inequality holds or some constants M and M.
(10) ]Ro(#’--iyO’)]M(l +]#’]+]y])M, ’ -,
Since we have [R(#’--iyO’)]M(l+[#]+]y])’ and ]exp(2ih2(’--iyO’)}[
4 exp (--2hy/a}, there exists a constant 6 such that

R(’--iyO’) exp (2ih2? (’-- iyO’)} /Ro(’-iyO’)[ 6< 1,
() ’ e g"-, ,
i we take y=m log (2 +’]). Here m is a positive real large enough.

Hence we have

R(#’--O’)
(12) =Ro(’--iO’)(1--[R(’--iO’) exp (2ih2?(’--iyO’)}/Ro(’--iyO’)])

0, ’ e -, y=m log

3. The Riemann function for the mixed problem. The solution
o the mixed problem (1)-(5) can be represented in terms o the Riemann
unction and the Poisson kernels. In this note we will construct and
study only the Riemann unction, since the Poisson kernels can be con-
structed and studied in a similar way. Let y be an arbitrarily fixed

1) The author was suggested these, conditions by Dr. N. Iwasaki.

2) Note that 2-(’+i;’)=-2(’+i;’).
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point (0, y"), y" e ,, =I or II. The Riemann function for the mixed
problem (1)-(5) is defined as the unique distribution solution G(x, y) of
the mixed problem (1)-(5) with f=0, g0-0, g(x")-3(x"--y") and k0
=k=k2=0, where 3(x) is the Dirac distribution. The Riemann func-
tion of the forward Cauchy problem for P,(D) in the whole physical
space R- is defined as the inverse Fourier-Laplace transform of
P,(+i)- in the sense of distributions"

(13) E,(x)=(2)- f P,(+i)- exp {i(x, +i}}d
JSn

where ] e --sO--F, with a positive real s large enough. Then the dis-
tribution E,(x--y) describles the incident or primary propagation
waves due to a point source/(x"- y"). We define the secondary Riemann
unction F(x,y)-F,(x,y) in 9, in the following way. Case Oy

h" G(x, y) E(x-- y)-- F(x, y) for 0 x h and G(x, y) F(x, y) or
x h. Case Yn h" G(x, y) F(x, y) or 0 Xn h and G(x, y) E(x-- y)

--F(x, y) or xh. F(x, y) describes the propagation of secondary
waves caused by the primary waves, the boundary wall x--0 and the
interace wall x--h. Thus the F and F are given as the solutions
the ollowing equations. Case Oyh" P(Dz)F,(x,y)--O or x0,
x" e/2,( 1, 2), Q(Dx)FI(x, y) Ixn=0-- Q(D)EI(x- y)

B(D)(E(x--y)--F(x, y)) In=_--C(Dx)Ff(x, Y)I--n+ (]--1, 2).
Case yh" P,(D)F,(x, y)=0 2or x0 and x" e 9, (=1, 2),

Q(D)F(x, y)I__0 0,
B(Dx)FI(x, y)]=n_-C(D)(Ef(x-y)--F(x, y))],=+ (]--1, 2).
Taking thus ormlly partial Fourier-Laplace transforms with re-

spect to x’=(x, ..., x_) in these equations, we obtain a system o
ordinary differential equations in x with coefficients depending on the
parameter ’/#]’. From (12) we can find uniquely the solutions ,($’
--i’9’, x, y), --1, 2 of the form"
=cexp{ix} if we take .=m log(2+l’l). Let S be the surface
{--(--i],,...,$), e,,n, ]--m log(2+l’l) in C. Then F(x,y)
and F(x, y) can be obtained by applying the inverse Fourier-Laplace

transformation along S to the solutions and . We shall give the
more explicit expressions in the following note.
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