76. On Some Additive Divisor Problems. II

By Yoichi Motohashi
Department of Mathematics, College of Science and Technology, Nihon University, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., June 8, 1976)
§ 1. In our previous paper [4] we have given a very simple proof of the asymptotic formula (as $N \rightarrow \infty$)

$$
\begin{aligned}
\mathrm{D}_{k}(N ; a) & =\sum_{n \leq N} \mathrm{~d}_{2}(n+a) \mathrm{d}_{k}(n) \\
& =S_{k}(\alpha) N(\log N)^{k}+O\left(N(\log N)^{k-1} \log \log N\right),
\end{aligned}
$$

where a is a fixed integer, $\mathrm{d}_{k}(n)$ the coefficient of $\zeta(s)^{k}, k \geqq 3$ arbitrary. The problem for general k has been firstly treated by Linnik in his book [3]. There it is indicated also that his method enables us to deduce even an expansion with an error-term $O\left(N(\log N)^{\varepsilon}\right), \varepsilon>0$ being arbitrarily small (see also Bredikhin [1]). But it seems that neither Linnik nor Bredikhin have been able to eliminate this error-term.

Now the purpose of this note is to announce
Theorem. We have the asymptotic expansion, for arbitrary k,

$$
\mathrm{D}_{k}(N ; a)=N \sum_{j=0}^{k} f_{k}^{(j)}(a)(\log N)^{j}+O\left(N(\log N)^{-1+\iota}\right)
$$

The coefficients can be calculated, but at the cost of big labour. The result should be compared with Estermann's asymptotic expansion for the case of $k=2$ ([2]).
§2. We indicate very briefly the main steps of our proof, whose detailed exposition will appear elsewhere.

Now by an obvious reason it is sufficient to consider the case of $a=1$. And we prove that, denoting by (P) the set of primes in the interval $\left(N^{3 / 4}, N(\log N)^{-4}\right)$ with sufficiently large A, we have
(*)

$$
\mathrm{D}_{k}(N ; 1)-\mathrm{D}_{k}(N ; p)=O\left(N(\log N)^{-1+\varepsilon}\right),
$$

uniformly for all $p \in(P)$. To do this we divide $\mathrm{D}_{k}(N ; a)$ into two parts. Let $z_{1}=\exp \left((\log N)^{\varepsilon_{1}}\right), \varepsilon_{1}=\varepsilon /(3 k+1), z_{2}=\exp \left((\log N)(\log \log N)^{-2}\right)$, and further let (I), (II) be two sets of integers $\leqq N$ such that $n \in$ (I) has no prime factors in the interval $\left(z_{1}, z_{2}\right)$ and (II) is the complementary set of (I). And we put, a being 1 or $p \in(P)$,

$$
\mathrm{D}_{k}(N ; a)=\sum_{n \in(\mathbb{I})}+\sum_{n \in(\mathrm{II})}=\mathrm{D}_{k}^{(1)}(N ; a)+\mathrm{D}_{k}^{(2)}(N ; a) .
$$

By a direct application of the dispersion method [3] we can show that
Lemma 1. We have, uniformly for all $p \in(P)$,

$$
\mathrm{D}_{k}^{(2)}(N ; 1)-\mathrm{D}_{k}^{(2)}(N ; p)=O\left(N(\log N)^{-2}\right) .
$$

§3. As for $\mathrm{D}_{k}^{(1)}(N ; a)$ we first define another two sets of integers
Δ_{1} and $\Delta_{2} . \Delta_{1}$ consists of all integers whose prime factors are all less than z_{1}, and Δ_{2} consists of all integers whose prime factors are all larger than z_{2}. Then we have, after an elementary consideration

$$
\mathrm{D}_{k}^{(1)}(N ; a)=\sum_{\substack{r \leq z_{1}^{\prime} \\ r \in A_{1}}} \mathrm{~d}_{k}(r) \sum_{\substack{n \leq N / r \\ n \in d_{2}}} \mathrm{~d}_{2}(r n+a) \mathrm{d}_{k}(n)+O\left(N \exp \left(-(\log N)^{\iota_{1}}\right)\right),
$$

where $z_{1}^{\prime}=\exp \left((\log N)^{3_{4}}\right)$. Let then $\mathrm{T}_{k}(N ; r, a)$ be the inner sum. We can write this in the following form:
where $\quad r \bar{r} \equiv 1(\bmod q), \quad Q_{1}(r)=(N / r)^{1 / 2}(\log (N / r))^{-E}, Q_{2}(r)=(N r)^{1 / 2}(\log$ $(N / r))^{E}$ with sufficiently large E. And here we have

Lemma 2. Let

$$
\mathrm{U}_{k}(x ; q, t)=\sum_{\substack { n \equiv t \\
\begin{subarray}{c}{n=x \\
n \in x_{2} \\
n \in A_{2}{ n \equiv t \\
\begin{subarray} { c } { n = x \\
n \in x _ { 2 } \\
n \in A _ { 2 } } }\end{subarray}} \mathrm{~d}_{k}(n), \quad(q, t)=1 .
$$

Then we have

$$
\mathrm{U}_{k}(x ; q, t)=O\left(x(\log \log N)^{c(k)} /(q \log N)\right)
$$

uniformly for any $q \leqq x^{1-\varepsilon}, N^{3 / 4} \leqq x \leqq N$, where $c(k)$ depends on k and ε at most.

Lemma 3. Let

$$
\mathrm{E}_{k}(x ; q)=\max _{y \leqq x} \max _{(q, t)=1}\left|\mathrm{U}_{k}(y ; q, t)-\sum_{\substack{n \leq y \\(n, q)=1 \\ n \in \Delta_{2}}} \mathrm{~d}_{k}(n) / \varphi(q)\right|
$$

Then we have, if $N^{3 / 4} \leqq x \leqq N$,

$$
\sum_{q \leq x^{1 / 2}(\log x)-B_{1}} \mathrm{E}_{k}(x ; q)=O\left(x(\log N)^{-B}\right)
$$

where B, B_{1} can be arbitrarily large but B_{1} depends on B.
Lemma 2 can be proved by an idea of Wolke [5], and Lemma 3 can be deduced by an application of the large sieve method as in our previous paper [4].

Hence we see at once that, uniformly for any $p \in(P)$,

$$
\mathrm{T}_{k}(N ; r, 1)-\mathrm{T}_{k}(N ; r, p)=O\left(N(\log \log N)^{c(k)}(\log r) /(r \log N)\right)
$$

and so

$$
\begin{aligned}
\mathrm{D}_{k}(N ; 1)-\mathrm{D}_{k}(N ; p) & =O\left(N(\log \log N)^{c(k)}(\log N)^{-1} \sum_{r \leq z_{1}^{\prime}} \mathrm{d}_{k}(r)(\log r) / r\right) \\
& =O\left(N(\log N)^{-1+(3 k+1) s_{1}}\right)
\end{aligned}
$$

Thus from Lemma 1 we get (*). Then, denoting by $\pi((P))$ the number of elements in (P), we have

$$
\mathrm{D}_{k}(N ; 1)=\pi((P))^{-1} \sum_{p \in(P)} \mathrm{D}_{k}(N ; p)+O\left(N(\log N)^{-1+\iota}\right)
$$

And the last sum over p can be calculated by the trigonometrical method of I. M. Vinogradov.

References

[1] B. M. Bredikhin: The dispersion method and definite binary additive problems. Russian Math. Surveys, 20, 85-125 (1965).
[2] T. Estermann: Über die Darstellung einer Zahl als Differenz von zwei Produkten. J. Reine Angew. Math., 164, 173-182 (1931).
[3] Ju. V. Linnik: The dispersion method in binary additive problems. Transl. Math. Monographs, No. 4, Amer. Math. Soc. (1963).
[4] Y. Motohashi: On some additive divisor problems (to appear in J. Math. Soc. Japan).
[5] D. Wolke: A new proof of a theorem of van der Corput. J. London Math. Soc., 5 (2) , 609-612 (1972).

