116. A Note on Quasi Metric Spaces

By Ivan L. Reilly
University of Auckland, Auckland, New Zealand
(Communicated by Kenjiro Shoda, M. J. A., Oct. 12, 1976)

1. Introduction and notations.

The purpose of this note is to point out errors in a proof and a theorem of Kim [3], and to give a corrected version of the theorem. By a quasi-metric on a set X we mean a non-negative real valued function p on $X \times X$ such that for $x, y, z \in X$ we have $p(x, y)=0$ if and only if $x=y$ and $p(x, y) \leq p(x, z)+p(z, y)$. The set $B(x, p, \varepsilon)=\{y$ $\in X: p(x, y)<\varepsilon\}$ is the p-ball centre x and radius ε. The topology induced on X by p has the family $\{B(x, p, \varepsilon): x \in X, \varepsilon>0\}$ as a base. If p is a quasi-metric on X, its conjugate quasi-metric q on X is given by $q(x, y)=p(y, x)$ for $x, y \in X$. Bitopological concepts which are not defined are taken from Kelly [2].
2. A theorem and an example.

The following result is hinted at by Stoltenberg [6], and proved explicitly in [4].

Theorem 1. Any quasi metric space whose conjugate quasi metric topology is compact is metrizable.

Proof. Let T_{1} be the topology induced on the set X by the quasi metric p whose conjugate q induces the compact topology T_{2} on X. Let U be T_{2} open, and $y \in U$. Since (X, T_{1}, T_{2}) is pairwise Hausdorff [2], for each $x \in X-U$ there is a T_{2} open set U_{x} and a T_{1} open set V_{x} such that $x \in U_{x}, y \in V_{x}$ and $U_{x} \cap V_{x}=\phi$. Hence $\left\{U_{x}: x \in X-U\right\}$ is a T_{2} open cover of $X-U$ which is T_{2} compact, and so there is a finite subcover

$$
U_{x_{1}}, \cdots, U_{x_{n}} . \quad \text { Let } V=\cap\left\{V_{x_{i}}: i=1, \cdots, n\right\}
$$

It is now easy to prove that either of the metrics d_{1} and d_{2}, given by

$$
\begin{gathered}
d_{1}(x, y)=\frac{1}{2}\{p(x, y)+q(x, y)\} \quad \text { and } \\
d_{2}(x, y)=\max \{p(x, y), q(x, y)\} \quad \text { for } x, y \in X
\end{gathered}
$$

induces the topology T_{1}, so that (X, T_{1}) is metrizable.
The question now arises as to whether the compactness condition of Theorem 1 can be relaxed.

Example 1. This is a modification of an example due to Balanzat [1]. Let X be the set of positive integers and define the non negative real valued function q on $X \times X$ by

$$
q(n, m)= \begin{cases}\frac{1}{m} & \text { if } n<m \\ 0 & \text { if } n=m \\ 1 & \text { if } n>m\end{cases}
$$

Then $q(n, m)=0$ iff $n=m$, and the following discussion of cases shows that q satisfies the triangle inequality.
Let $n, m, r \in X$, then (i) if $n<m<r, q(n, m)=1 / m$
while $q(n, r)+q(r, m)=1 / r+1$.
(ii) if $n<r<m, q(n, m)=1 / m$
while $q(n, r)+q(r, m)=1 / r+1 / m$.
(iii) if $m<r<n, q(n, m)=1$
while $q(n, r)+q(r, m)=1+1$.
(iv) if $m<n<r, q(n, m)=1$
while $q(n, r)+q(r, m)=1 / r+1$.
(v) if $r<m<n, q(n, m)=1$
while $q(n, r)+q(r, m)=1+1 / m$.

$$
\text { (vi) if } r<n<m, q(n, m)=1 / m
$$

while $q(n, r)+q(r, m)=1+1 / m$. Thus q is a quasi metric on X, with conjugate p given by

$$
p(n, m)=q(m, n)= \begin{cases}1 & \text { if } n<m \\ 0 & \text { if } n=m \\ \frac{1}{n} & \text { if } n>m\end{cases}
$$

Let (X, T_{1}, T_{2}) be the bitopological space induced by p and q. Then (X, T_{2}) is not metrizable because it is not Hausdorff. For let $m, n \in X$, $\varepsilon, \delta>0$ and $U=B(m, q, \varepsilon)$ and $V=B(n, q, \delta)$. There is an $r \in X$ such that $r>\max \left\{m, n, \frac{1}{\varepsilon}, \frac{1}{\delta}\right\}$. Then $q(m, r)=1 / r<\varepsilon$ and $q(n, r)=1 / r<\delta$, so that $r \in U \cap V$. Hence, there is no pair of disjoint T_{2} open sets one containing m and the other containing n. Now (X, T_{2}) is second countable and T_{1} so that compactness is equivalent to the Bolzano-Weierstrass property. Let F be any infinite set in $X, n \in F$, and $\varepsilon>0$. Take $m \in X$ such that $m>\max \left\{n, \frac{1}{\varepsilon}\right\}$. Since F is infinite there is a $k \in F$ such that $k>m$, and thus $q(n, k)=\frac{1}{k}<\frac{1}{m}<\varepsilon$, so that $k \in B(n, q, \varepsilon)$. Hence n is a limit point of F, and $\left(X, T_{2}\right)$ is compact. Thus Theorem $1 \mathrm{im}-$ plies that $\left(X, T_{1}\right)$ is metrizable. Indeed, $B(n, p, 1 / n)=\{n\}$ for each n $\in X$, so that $\left(X, T_{1}\right)$ is discrete. Then $\left(X, T_{2}\right)$ is a quasi metric space which is not metrizable even though its conjugate topology $\left(X, T_{1}\right)$ is countable and discrete, and hence has the following properties: all the separation properties, Lindelof, second countable, separable, para-
compact, locally compact, σ-compact, metacompact, countably paracompact, and is a K-space. Thus no combination of these properties can replace the compactness of Theorem 1.
3. On a paper by Kim.

Kim [3] claims to give a bitopological proof of a theorem of Sion and Zelmer [5]. The following example shows his mistake.

Example 2. Let $X=[0,1]$ and define the real valued function p on $X \times X$ by

$$
p(x, y)= \begin{cases}x-y & x \geq y \\ \frac{1}{2}(y-x) & x \leq y\end{cases}
$$

Then p is a quasi metric on X. Now $B(x, p, \varepsilon)=(x-\varepsilon, x+2 \varepsilon)$ for suitable $x \in X$ and $\varepsilon>0$. Thus p induces the usual topology T_{1} on $[0,1]$. Hence (X, T_{1}) is a regular, compact quasi-pseudo-metric space, and p has conjugate q given by

$$
q(x, y)= \begin{cases}y-x & x \leq y \\ \frac{1}{2}(x-y) & x \geq y\end{cases}
$$

So $B(x, q, \varepsilon)=(x-2 \varepsilon, x+\varepsilon)$ and q induces the usual topology T_{2} on $[0,1]$, so that $T_{1} \subset T_{2}$. If $d(x, y)=\max \{p(x, y), q(x, y)\}$ then $d(x, y)=|x-y|$ $\neq q(x, y)$ as Kim claims. What can be said is that d induces the same topology as q. In general, nothing can be said about the metrizability of (X, p).

As a corollary to this proof Kim claims the theorem "Any compact quasi metric space is metrizable." The space (X, T_{2}) of Example 1 shows that he is mistaken. Theorem 1 is a correct version of this result.

References

[1] M. Balanzat: Sobre la metrización de los espacios causi métricos. Gaz. Mat. Lisboa, 12 no. 50, 91-94 (1951).
[2] J. C. Kelly: Bitopological spaces. Proc. London Math. Soc., 13, 71-89 (1963).
[3] Y. W. Kim: Pseudo quasi metric spaces. Proc. Japan Acad., 44, 10091012 (1968).
[4] I. L. Reilly: Quasi-gauges, quasi-uniformities and bitopological spaces. Ph. D. thesis, University of Illinois, Urbana (1970).
[5] M. Sion and G. Zelmer: On quasi-metrizability. Canadian Jour. Math., 19, 1243-1249 (1967).
[6] R. Stoltenberg: On quasi metric spaces. Duke Math. Jour., 36, (1969).

