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1. Introduction. In this note we shall give the unique solvability
theorem for a degenerate oblique derivative problem with a complex
parameter, by introducing an extra boundary eondition and adding an
error term to the original boundary condition. The background is some
work of Egorov and Kondrat’ev [4] and SjSstrand [6]. In the non-
degenerate ease such theorem was obtained by Agranovi6 and Viie [2].
As an application of this theorem, we shall state some results on the
angular distribution of eigenvalues and the completeness of eigenfune-
tions of a degenerate oblique derivative problem having an extra
boundary condition. In the non-degenerate ease such results were
obtained by Agmon [1].

Let 9 be a bounded domain in R (n>=3) with boundary/ of class
C. /2=/2 U/" is a C-manifold with boundary. Let a, b and c be real
valued C-functions on /, n the unit exterior normal to/" and a real
C-vector field on/. We shall consider the following oblique derivative
problem" For given functions f and defined in/2 and on/" respectively,
find a function u in ;2 such that

(2+A)u=f in
( * ) = on F.

Here 2--re with r>__0 and 00(2z and A=3/3x+3/3x+... +3/3x.
If a(x)0 on /’, then the problem (,) is coercive and the unique

solvability theorem was obtained by Agranovi6 and Viik [2].
If a(x) vanishes at some points of F, then the problem (,) is non-

coercive. Egorov and Kondrat’ev [4] studied the problem (,) under the
following assumptions (A) and (B)"

(A) The set Fo={x e 1;"; a(x)=0} is an (n--2)-dimensional regular
submanffold o/.

(B) The vector field a is transversal to
In the case that a(x) changes signs on F, they proved the non-

existence and non-regularity theorem or the problem (,) and, by in-
troducing an extra boundary condition and adding an error term to the
original boundary condition u-, they succeeded in getting a problem
or which they could obtain the existence and regularity theorem,
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though the unique solvability theorem is not obtained. On the other
hand, in the case that a(x) does not change signs on F, i.e., in the case
that a(x)>__0 on F, the unique solvability theorem for the problem (,)
was obtained by Taira [7].

2. Results. In this note, in addition to the assumptions (A) and
(B), we introduce the following assumption (C):

(C) On every connected component F of F0 (i- 1, 2, ..., N), we
have

a----(a)=...=a-l(a)=O and ’(a)0
for some positive integer k.

We divide the set {1, 2, ..., N}=I U I+ UI- where
if and only if k is even;
if and only if k is odd and a(a)
if and only if k is odd and a(a)0 on F,

rOo=r; F= F; F=U
tGIO iGI+ iGi-

hence -Po=N UN U F. Further we put
k=max k, k+=max k, k-=max

iGI iGI+

=l/(k+l); +=l/(k++l); -=l/(k-+l); =min(3,+,-).
For each s e R, we denote the Sobolev spaees on 9, F, F and FF of

order s by H(9.), H(F), H(F) and H(F;)and their norms by
n,(r, l,(r) and ]n,(r) respectively.
Now we can state the main result"
Theorem. Let 2=re with r0 and 0 2 and let s be any

integer 2. Assume that the conditions (A), (B) and (C) hold. Then we
can find the properly supported continuous linear operators R+" Ho(F)
oHo-/(F) and R-" Ho(F)Ho-/(F) for all a eR such that if
=rr(O) for some constant r(O)0 depending only on 0 and s then for
any (f , u+) e H-(9) H-n(F) H-m+-+[(F) the problem

(2 + d)u f in ,
u+R-w-(aU

O r+R-w-= one,

R+(u ])=u+ on F
has a unique solution (u, w-) e H-+() H-m+-z(N) and tha the
priori estimate

lu +12 lut
< C()(ltfl

+1 ’-+’-’+1u+
holds for some consan C(O)0 depending only on and s.

Reark 1. In the se that f0:f, the condition (C) cn be weak-
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ened (see [7], the condition (C)).
Corollary. Assume that the conditions (A), (B) and (C) hold with

Ig ---. Let us introduce the linear unbounded operator in the Hilbert
space L(9) as follows"

a) The domain of 2I is (lI) {u e H +(9) Au e L(), u
--a(u/)+u/ (b +ic)u [r--O and R+(u It)----0}. (/--min (/0,/+).)

b) For u e (), Xu= --Au.
Then the operator is closed and has the following properties"
1) The spectrum of is discrete and the eigenvalues of have

finite multiplicities.
2) For any 0 there is a constant r(D0 depending only on

such that the resolvent set of comprises the set {2=-re r>=r.(D, <=0
_<2=--} and that there the resolvent (2I--)- satisfies the estimate

for some constant C(D>0 depending only on . In particular, there
are only a finite number of eigenvalues outside any angle" arg
0.

3) The positive axis is a direction of condensation of eigenvalues.
4) The generalized eigenfunctions are complete in L(t2) they are

also complete in )() in the
Remark 2. Combining the result 2) with Theorema 1-1 of [3], we

obtain that the operator- generates an exponential distribution semi-
group U(t) which is holomorphic in any sector" {z=t+is; z0, [argzl
}, 0/2. Further, arguing as in the proof of Theorem 3.4 in
Chap. 1 of [5], it follows that in this sector the estimate
<_Mett(-)/ holds for some positive constants M and depending only
on 5 (cf. [3], Theorema 2-1). Since01, the semi-group U(t) is
unbounded near t=0. But, by using Theorem 3.3 and Theorem 6.8 in
Chap. 1 o [5], we can apply Corollary to a mixed problem for the heat
equation and obtain the existence and uniqueness theorem.

:. Idea of Proofs. The proo o Theorem is similar to that of
Theorem of [7]. First we reduce the problem (.) to the study of a first
order pseudodifferential equation T()f----@ on the boundary/" by means
of the Dirichlet problems. Next, by introducing an extra boundary
condition R+’)’(I")-,)’(F) and adding an error term R-" _q)’(F)
--._q)’(F) to the equation T()f=, we get a problem

(u*+)\R + 0
for which we have the existence and regularity theorem. This is the
essential step in the proof and proved exactly as in Theorem 1 of [6]
(cf. [6], Remark 4.19). Further, using a method of Agmon and Niren-
berg as in [7], we show that for I1 sufficiently large the mapping r() is
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one to one and onto. Finally we combine these results to get Theorem.
The proof of Corollary is the same as that of Corollary of [7].

The details will be given elsewhere.
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