150. On the Jordan-Hölder Theorem

By Zensiro Goseki
Gunma University
(Communicated by Kenjiro Shoda, m. J. A., Dec. 13, 1976)

Let $\left\{A_{n}, f_{n}\right\}$ be a family of groups A_{n} and homomorphisms $f_{n}: A_{n}$ $\rightarrow A_{n-1}$, defined for all $n \in Z(Z=\{0, \pm 1, \pm 2, \cdots\})$. If a sequence

$$
\cdots \longrightarrow A_{n+1} \xrightarrow{f_{n+1}} A_{n} \xrightarrow{f_{n}} A_{n-1} \xrightarrow{f_{n-1}} \cdots
$$

is exact, then we denote it by ($A_{n}: f_{n}$) and we say ($A_{n}: f_{n}$) to be well defined. Generalizations of Isomorphism Theorem and the JordanHölder Theorem in group theory have been given in some papers (for example, [2] and [3]). The purpose of this note is also to give those theorems for a sequence $\left(A_{n}: f_{n}\right)$.

1. Isomorphism Theorem. In this section, let $\left(A_{n}: f_{n}\right)$ and ($B_{n}: g_{n}$) be well defined. A translation $\left\{\alpha_{n}\right\}$ of $\left(A_{n}: f_{n}\right)$ into ($B_{n}: g_{n}$) is the set of homomorphisms $\alpha_{n}: A_{n} \rightarrow B_{n}$ such that $\alpha_{n-1} f_{n}=g_{n} \alpha_{n}$ for all $n \in Z$. Moreover, if each α_{n} is an isomorphism, we say that ($A_{n}: f_{n}$) is isomorphic to $\left(B_{n}: g_{n}\right)$. If for each $n \in Z, B_{n}$ is a subgroup of A_{n}, i.e., $A_{n} \geqslant B_{n}$, and $f_{n}=g_{n}$ on B_{n}, then we denote ($B_{n}: g_{n}$) by ($B_{n}: f_{n}$). In this case, we call $\left(B_{n}: f_{n}\right)$ a subsequence of $\left(A_{n}: f_{n}\right)$ and write it in the notation: $\left(A_{n}: f_{n}\right) \geqslant\left(B_{n}: f_{n}\right)$. Moreover, if $A_{n} \triangleright B_{n}$ for all $n \in Z$, we call ($B_{n}: f_{n}$) a normal subsequence of $\left(A_{n}: f_{n}\right)$ and write it in the notation: $\left(A_{n}: f_{n}\right) \triangleright\left(B_{n}: f_{n}\right)$.

It is easy to prove the following
Lemma 1. Let $\left(A_{n}: f_{n}\right)$ be well defined. For each $n \in Z$, let M_{n} be a subgroup of A_{n}. Then $\left(M_{n}: f_{n}\right)$ is well defined iff $f_{n}\left(M_{n}\right)=f_{n}\left(A_{n}\right)$ $\cap M_{n-1}$ for all $n \in Z$.

By Lemma 1 and the same way as in proofs of [1, Lemma 2] and [1, Lemma 3], we can prove the following

Lemma 2. Let $\left(A_{n}: f_{n}\right) \geqslant\left(P_{n}: f_{n}\right)$. For each $n \in Z$, let $A_{n} \geqslant M_{n}$ $\triangleright P_{n}$. Then $\left(M_{n}: f_{n}\right)$ is well defined iff $\left(M_{n} / P_{n}: \bar{f}_{n}\right)$ is well defined where each \bar{f}_{n} is a mapping which is naturally induced by f_{n}.

Theorem 1. Let $\left\{\alpha_{n}\right\}:\left(A_{n}: f_{n}\right) \rightarrow\left(B_{n}: g_{n}\right)$ be a translation. Then $\left(\alpha_{n}\left(A_{n}\right): g_{n}\right)$ is well defined iff $\left(\operatorname{Ker}\left(\alpha_{n}\right): f_{n}\right)$ is well defined. In this case, $\left(A_{n} / \operatorname{Ker}\left(\alpha_{n}\right): \bar{f}_{n}\right)$ is also well defined and isomorphic to $\left(\alpha_{n}\left(A_{n}\right)\right.$: g_{n}, where for each $n \in Z, \bar{f}_{n}$ is a mapping which is naturally induced by f_{n}.

Proof. The first assertion follows from routine arguments and the remainder follows from Lemma 2.

Theorem 2. Let $\left(A_{n}: f_{n}\right) \triangleright\left(M_{n}: f_{n}\right)$ and $\left(A_{n}: f_{n}\right) \geqslant\left(H_{n}: f_{n}\right)$. Then $\left(M_{n} H_{n}: f_{n}\right)$ is well defined iff $\left(M_{n} \cap H_{n}: f_{n}\right)$ is well defined. In this case, $\left(M_{n} H_{n} / M_{n}: \bar{f}_{n}\right)$ and $\left(H_{n} / M_{n} \cap H_{n}: \hat{f}_{n}\right)$ are well defined and mutually isomorphic, where for each $n \in Z, \bar{f}_{n}$ and \hat{f}_{n} are mappings which are naturally induced by f_{n}.

Proof. By Lemma 2, $\left(A_{n} / M_{n}: \bar{f}_{n}\right)$ is well defined. We consider the translation $\left\{\alpha_{n}\right\}:\left(H_{n}: f_{n}\right) \rightarrow\left(A_{n} / M_{n}: \bar{f}_{n}\right)$ where each α_{n} is a natural homomorphism. By Theorem 1, $\left(M_{n} H_{n} / M_{n}: \bar{f}_{n}\right)$ is well defined iff ($M_{n} \cap H_{n}: f_{n}$) is well defined. Hence the first assertion follows from Lemma 2. A proof of the remainder is obvious.
2. Jordan-Hölder Theorem. Now we simplify our notation, that is, we write G^{*} instead of $\left(G_{n}: f_{n}\right)$. Let $G^{*} \geqslant A^{*}, B^{*}$ and $G^{*} \triangleright M^{*}$. If $\left(A_{n} \cap B_{n}: f_{n}\right),\left(A_{n} B_{n}: f_{n}\right)$ and $\left(G_{n} / M_{n}: \bar{f}_{n}\right)$ are well defined where for each $n \in Z, \bar{f}_{n}$ is a mapping which is naturally induced by f_{n}, then we write $A^{*} \cap B^{*}, A^{*} B^{*}$ and G^{*} / M^{*} instead of those and say that $A^{*} \cap B^{*}$, $A^{*} B^{*}$ and G^{*} / M^{*} are well defined, respectively. If there is a family $\left\{K_{i}^{*}\right\}$ such that $G^{*}=K_{0}^{*} \triangleright K_{1}^{*} \triangleright \ldots \triangleright K_{r}^{*}=A^{*}, A^{*}$ is said to be subnormal in $G^{*}, G^{*} \triangleright \triangleright A^{*}$. Let $G^{*} \geqslant A^{*}$. We say that A^{*} has the I-property in G^{*} if for every subnormal subsequence B^{*} of $G^{*}, A^{*} \cap B^{*}$ is well defined. Let $G^{*}=K_{0}^{*} \triangleright K_{1}^{*} \triangleright \ldots \triangleright K_{r}^{*}=A^{*}$. This series is called an I normal series if each K_{i}^{*} has the I-property in G^{*}.

From the definition, we have easily the following
Proposition 1. Let $G^{*}=K_{0}^{*} \triangleright K_{1}^{*} \triangleright \cdots \triangleright K_{r}^{*}=A^{*}$. Then this is an I-normal series iff each K_{i+1}^{*} has the I-property in K_{i}^{*}.

Let $G^{*} \geqslant A^{*}$. If there is $n \in Z$ such that A_{n} is a proper subgroup of G_{n}, then A^{*} is said to be a proper subsequence of G^{*}. We say that G^{*} is I-simple if no proper normal subsequence of G^{*} has the I-property in G^{*}. Furthermore, an I-normal series $G^{*}=K_{0}^{*} \triangleright K_{1}^{*} \triangleright \ldots \triangleright K_{r}^{*}=A^{*}$ is called an I-composition series from G^{*} to A^{*} if each K_{i+1}^{*} is a proper subsequence of K_{i}^{*} such that K_{i}^{*} / K_{i+1}^{*} is I-simple.

Proposition 2. Let $G^{*} \triangleright M^{*}$ and suppose M^{*} has the I-property in G^{*}. Then G^{*} / M^{*} is I-simple iff for every H^{*} having the I-property in $G^{*}, G^{*} \triangleright H^{*} \geqslant M^{*}$ implies $H^{*}=G^{*}$ or $H^{*}=M^{*}$.

Proof. If part: Let $G^{*} / M^{*} \triangleright X^{*}$ and suppose X^{*} has the I property in G^{*} / M^{*}. Then, by Lemma 2, there is a subsequence H^{*} of G^{*} such that $G^{*} \triangleright H^{*} \triangleright M^{*}$ and $X^{*}=H^{*} / M^{*}$. Now let $G^{*} \triangleright \triangleright L^{*}$. Then $L^{*} \cap M^{*}$ is well defined and so is $L^{*} M^{*}$ by Theorem 2. Hence $L^{*} M^{*} / M^{*}$ is well defined by Lemma 2 and $G^{*} / M^{*} \triangleright \triangleright L^{*} M^{*} / M^{*}$. Thus H^{*} / M^{*} $\cap L^{*} M^{*} / M^{*}$ is well defined and so is $H^{*}\left(L^{*} M^{*}\right) / M^{*}$. Hence $H^{*}\left(L^{*} M^{*}\right)$ $=H^{*} L^{*}$ is well defined by Lemma 2 and so is $H^{*} \cap L^{*}$ by Theorem 2. This shows that H^{*} has the I-property in G^{*}. Hence $H^{*}=M^{*}$ or H^{*} $=G^{*}$. Therefore G^{*} / M^{*} is I-simple. Only if part: By the same way
as in the stated above, the application of Lemma 2 and Theorem 2 gives its proof and so we omit it.

Lemma 3. Let $G^{*} \triangleright A^{*}$ and $G^{*} \geqslant B^{*}$. Suppose A^{*} and B^{*} have the I-property in G^{*}. Then $A^{*} B^{*}$ is well defined. Furthermore if $G^{*} \triangleright A^{*} B^{*}$, then $A^{*} B^{*}$ has the I-property in G^{*}.

Proof. Let $G^{*} \triangleright \triangleright H^{*}$. Then $A^{*} \cap H^{*}$ is well defined and so is $A^{*} H^{*}$ by Theorem 2. Furthermore $G^{*} \triangleright \triangleright A^{*} H^{*}$ and so $B^{*} \cap A^{*} H^{*}$ is well defined. On the other hand, $A^{*} \cap B^{*}$ is well defined and $B^{*} \cap A^{*} H^{*}$ $\geqslant A^{*} \cap B^{*}$. Hence $\left(A^{*} \cap B^{*}\right) \cap\left(B^{*} \cap A^{*} H^{*}\right)$ is well defined and so is A^{*} $\cap\left(B^{*} \cap A^{*} H^{*}\right)$. Thus $A^{*}\left(B^{*} \cap A^{*} H^{*}\right)$ and $A^{*} B^{*}$ are well defined by Theorem 2. Hence, simultaneously with $A^{*}\left(B^{*} \cap A^{*} H^{*}\right)=A^{*} B^{*}$ $\cap A^{*} H^{*}$, we obtain that $A^{*} B^{*} \cap A^{*} H^{*}$ is well defined. Let $G^{*} \triangleright A^{*} B^{*}$. Then $\left(A^{*} B^{*}\right)\left(A^{*} H^{*}\right)$ is well defined and so is $\left(A^{*} B^{*}\right) H^{*}$. Thus, by Theorem 2, $A^{*} B^{*} \cap H^{*}$ is well defined. Hence $A^{*} B^{*}$ has the I-property in G^{*}.

Lemma 4. Let $G^{*} \triangleright \triangleright A^{*} \triangleright B^{*}$ and let $G^{*} \triangleright \triangleright H^{*} \triangleright C^{*}$. Suppose A^{*}, B^{*} and C^{*} have the I-property in G^{*}. Then $B^{*}\left(A^{*} \cap C^{*}\right)$ and $B^{*}\left(A^{*} \cap H^{*}\right)$ are well defined. Furthermore $B^{*}\left(A^{*} \cap C^{*}\right)$ has the I property in $B^{*}\left(A^{*} \cap H^{*}\right)$.

Proof. It is easy to see that $B^{*}\left(A^{*} \cap C^{*}\right)$ and $B^{*}\left(A^{*} \cap H^{*}\right)$ are well defined. Furthermore $G^{*} \triangleright \triangleright B^{*}\left(A^{*} \cap H^{*}\right)$. Since B^{*} and $A^{*} \cap C^{*}$ have the I-property in G^{*}, those have the I-property in $B^{*}\left(A^{*} \cap H^{*}\right)$. Moreover $B^{*}\left(A^{*} \cap H^{*}\right) \triangleright B^{*}\left(A^{*} \cap C^{*}\right)$ and $B^{*}\left(A^{*} \cap H^{*}\right) \triangleright B^{*}$. Hence, by Lemma $3, B^{*}\left(A^{*} \cap C^{*}\right)$ has the I-property in $B^{*}\left(A^{*} \cap H^{*}\right)$.

From Proposition 1, Lemma 4 and the well known results, we have following

Lemma 5. Let

$$
\begin{equation*}
G^{*}=K_{0}^{*} \triangleright K_{1}^{*} \triangleright \cdots \triangleright K_{r}^{*}=A^{*}, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
G^{*}=L_{0}^{*} \triangleright L_{1}^{*} \triangleright \cdots \triangleright L_{s}^{*}=A^{*} \tag{ii}
\end{equation*}
$$

be two I-normal series from G^{*} to A^{*}. Then $K_{i}^{*}\left(K_{i-1}^{*} \cap L_{j}^{*}\right)\left(=K_{i, j}^{*} ; r\right.$ $\geqslant i \geqslant 1 ; s \geqslant j \geqslant 0)$ and $L_{j}^{*}\left(L_{j-1}^{*} \cap K_{i}^{*}\right)\left(=L_{j, i}^{*} ; s \geqslant j \geqslant 1 ; r \geqslant i \geqslant 0\right)$ are well defined. Furthermore, for each $i, j(r \geqslant i \geqslant 1 ; s \geqslant j \geqslant 0), K_{i, j}^{*}$ has the I property in G^{*} and

$$
\begin{equation*}
K_{i-1}^{*}=K_{i, 0}^{*} \triangleright K_{i, 1}^{*} \triangleright \cdots \triangleright K_{i, s}^{*}=K_{i}^{*} . \tag{1}
\end{equation*}
$$

Moreover, for each $i, j(r \geqslant i \geqslant 0 ; s \geqslant j \geqslant 1), L_{j, i}^{*}$ has the I-property in G^{*} and
(2) $\quad L_{j-1}^{*}=L_{j,,}^{*} \triangleright L_{j, 1}^{*} \triangleright \cdots \triangleright L_{j, r}^{*}=L_{j}^{*}$.

Joining the I-normal series (1), respectively (2), together, we obtain refinements of the I-normal series (i) and (ii) for which $K_{i, j-1}^{*} / K_{i, j}^{*}$ $\leftrightarrow L_{j, i-1}^{*} / L_{j, i}^{*}$ is a one to one correspondence of their factors such that corresponding factors are isomorphic.

By Lemma 5 and the well known procedure, we have the following

Theorem 3 (Jordan-Hölder Theorem). If
$G^{*}=K_{0}^{*} \geqslant K_{1}^{*} \geqslant \cdots \geqslant K_{r}^{*}=A^{*} \quad$ and $\quad G^{*}=L_{0}^{*} \geqslant L_{1}^{*} \geqslant \cdots \geqslant L_{s}^{*}=A^{*}$ are two I-composition series from G^{*} to A^{*}, then $r=s$. Furthermore there is a permutation π of $\{1, \cdots, r\}$ such that K_{i-1}^{*} / K_{i}^{*} is isomorphic to $L_{\pi(i)-1}^{*} / L_{\pi(i)}^{*}$ for each $i=1, \cdots, r$.

References

[1] Z. Goseki: On Sylow subgroups and an extension of groups. Proc. Japan Acad., 50, 576-579 (1974).
[2] O. Tamaschke: A generalization of subnormal subgroup. Arch. Math., 19, 337-347 (1968).
[3] O. Wyler: Ein Isomorphiesatz. Arch. Math., 14, 13-15 (1963).

