150. On the Jordan-Hölder Theorem

By Zensiro GOSEKI Gunma University

(Communicated by Kenjiro SHODA, M. J. A., Dec. 13, 1976)

Let $\{A_n, f_n\}$ be a family of groups A_n and homomorphisms $f_n: A_n \to A_{n-1}$, defined for all $n \in \mathbb{Z}$ $(\mathbb{Z} = \{0, \pm 1, \pm 2, \dots\})$. If a sequence

 $\cdots \longrightarrow A_{n+1} \xrightarrow{f_{n+1}} A_n \xrightarrow{f_n} A_{n-1} \xrightarrow{f_{n-1}} \cdots$

is exact, then we denote it by $(A_n: f_n)$ and we say $(A_n: f_n)$ to be well defined. Generalizations of Isomorphism Theorem and the Jordan-Hölder Theorem in group theory have been given in some papers (for example, [2] and [3]). The purpose of this note is also to give those theorems for a sequence $(A_n: f_n)$.

1. Isomorphism Theorem. In this section, let $(A_n:f_n)$ and $(B_n:g_n)$ be well defined. A translation $\{\alpha_n\}$ of $(A_n:f_n)$ into $(B_n:g_n)$ is the set of homomorphisms $\alpha_n:A_n \rightarrow B_n$ such that $\alpha_{n-1}f_n = g_n\alpha_n$ for all $n \in \mathbb{Z}$. Moreover, if each α_n is an isomorphism, we say that $(A_n:f_n)$ is *isomorphic* to $(B_n:g_n)$. If for each $n \in \mathbb{Z}$, B_n is a subgroup of A_n , i.e., $A_n \geqslant B_n$, and $f_n = g_n$ on B_n , then we denote $(B_n:g_n)$ by $(B_n:f_n)$. In this case, we call $(B_n:f_n)$ a subsequence of $(A_n:f_n)$ and write it in the notation: $(A_n:f_n) \geqslant (B_n:f_n)$. Moreover, if $A_n \triangleright B_n$ for all $n \in \mathbb{Z}$, we call $(B_n:f_n) = n$ normal subsequence of $(A_n:f_n)$ and write it in the notation: $(A_n:f_n) \triangleright (B_n:f_n)$.

It is easy to prove the following

Lemma 1. Let $(A_n; f_n)$ be well defined. For each $n \in \mathbb{Z}$, let M_n be a subgroup of A_n . Then $(M_n; f_n)$ is well defined iff $f_n(M_n) = f_n(A_n) \cap M_{n-1}$ for all $n \in \mathbb{Z}$.

By Lemma 1 and the same way as in proofs of [1, Lemma 2] and [1, Lemma 3], we can prove the following

Lemma 2. Let $(A_n:f_n) \ge (P_n:f_n)$. For each $n \in \mathbb{Z}$, let $A_n \ge M_n$ $\triangleright P_n$. Then $(M_n:f_n)$ is well defined iff $(M_n/P_n:\overline{f_n})$ is well defined where each $\overline{f_n}$ is a mapping which is naturally induced by f_n .

Theorem 1. Let $\{\alpha_n\}: (A_n:f_n) \rightarrow (B_n:g_n)$ be a translation. Then $(\alpha_n(A_n):g_n)$ is well defined iff (Ker $(\alpha_n):f_n$) is well defined. In this case, $(A_n/\text{Ker } (\alpha_n):\bar{f_n})$ is also well defined and isomorphic to $(\alpha_n(A_n):g_n)$, where for each $n \in \mathbb{Z}$, $\bar{f_n}$ is a mapping which is naturally induced by f_n .

Proof. The first assertion follows from routine arguments and the remainder follows from Lemma 2.

Z. Goseki

Theorem 2. Let $(A_n:f_n) \triangleright (M_n:f_n)$ and $(A_n:f_n) \ge (H_n:f_n)$. Then $(M_nH_n:f_n)$ is well defined iff $(M_n \cap H_n:f_n)$ is well defined. In this case, $(M_nH_n/M_n:f_n)$ and $(H_n/M_n \cap H_n:f_n)$ are well defined and mutually isomorphic, where for each $n \in \mathbb{Z}$, f_n and \hat{f}_n are mappings which are naturally induced by f_n .

Proof. By Lemma 2, $(A_n/M_n; \overline{f}_n)$ is well defined. We consider the translation $\{\alpha_n\}: (H_n; f_n) \rightarrow (A_n/M_n; \overline{f}_n)$ where each α_n is a natural homomorphism. By Theorem 1, $(M_nH_n/M_n; \overline{f}_n)$ is well defined iff $(M_n \cap H_n; f_n)$ is well defined. Hence the first assertion follows from Lemma 2. A proof of the remainder is obvious.

2. Jordan-Hölder Theorem. Now we simplify our notation, that is, we write G^* instead of $(G_n: f_n)$. Let $G^* \ge A^*$, B^* and $G^* \ge M^*$. If $(A_n \cap B_n: f_n)$, $(A_nB_n: f_n)$ and $(G_n/M_n: \overline{f_n})$ are well defined where for each $n \in Z$, $\overline{f_n}$ is a mapping which is naturally induced by f_n , then we write $A^* \cap B^*$, A^*B^* and G^*/M^* instead of those and say that $A^* \cap B^*$, A^*B^* and G^*/M^* are well defined, respectively. If there is a family $\{K_i^*\}$ such that $G^* = K_0^* \supseteq K_1^* \supseteq \cdots \supseteq K_r^* = A^*$, A^* is said to be subnormal in G^* , $G^* \supseteq \supseteq A^*$. Let $G^* \ge A^*$. We say that A^* has the *I*-property in G^* if for every subnormal subsequence B^* of G^* , $A^* \cap B^*$ is well defined. Let $G^* = K_0^* \supseteq K_1^* \supseteq \cdots \supseteq K_r^* = A^*$. This series is called an *I*normal series if each K_i^* has the *I*-property in G^* .

From the definition, we have easily the following

Proposition 1. Let $G^* = K_0^* \triangleright K_1^* \triangleright \cdots \triangleright K_r^* = A^*$. Then this is an *I*-normal series iff each K_{i+1}^* has the *I*-property in K_i^* .

Let $G^* \ge A^*$. If there is $n \in Z$ such that A_n is a proper subgroup of G_n , then A^* is said to be a *proper subsequence* of G^* . We say that G^* is *I-simple* if no proper normal subsequence of G^* has the *I*-property in G^* . Furthermore, an *I*-normal series $G^* = K_0^* \supseteq K_1^* \supseteq \cdots \supseteq K_r^* = A^*$ is called an *I-composition series* from G^* to A^* if each K_{i+1}^* is a proper subsequence of K_i^* such that K_i^*/K_{i+1}^* is *I*-simple.

Proposition 2. Let $G^* \triangleright M^*$ and suppose M^* has the I-property in G^* . Then G^*/M^* is I-simple iff for every H^* having the I-property in G^* , $G^* \triangleright H^* \ge M^*$ implies $H^* = G^*$ or $H^* = M^*$.

Proof. If part: Let $G^*/M^* \triangleright X^*$ and suppose X^* has the *I*-property in G^*/M^* . Then, by Lemma 2, there is a subsequence H^* of G^* such that $G^* \triangleright H^* \triangleright M^*$ and $X^* = H^*/M^*$. Now let $G^* \triangleright \triangleright L^*$. Then $L^* \cap M^*$ is well defined and so is L^*M^* by Theorem 2. Hence L^*M^*/M^* is well defined by Lemma 2 and $G^*/M^* \triangleright \triangleright L^*M^*/M^*$. Thus $H^*/M^* \cap L^*M^*/M^*$ is well defined and so is $H^*(L^*M^*)/M^*$. Hence $H^*(L^*M^*) = H^*L^*$ is well defined by Lemma 2 and so is $H^* \cap L^*$ by Theorem 2. This shows that H^* has the *I*-property in G^* . Hence $H^* = M^*$ or $H^* = G^*$. Therefore G^*/M^* is *I*-simple. Only if part: By the same way

as in the stated above, the application of Lemma 2 and Theorem 2 gives its proof and so we omit it.

Lemma 3. Let $G^* \triangleright A^*$ and $G^* \ge B^*$. Suppose A^* and B^* have the *I*-property in G^* . Then A^*B^* is well defined. Furthermore if $G^* \triangleright A^*B^*$, then A^*B^* has the *I*-property in G^* .

Proof. Let $G^* \triangleright \triangleright H^*$. Then $A^* \cap H^*$ is well defined and so is A^*H^* by Theorem 2. Furthermore $G^* \triangleright \triangleright A^*H^*$ and so $B^* \cap A^*H^*$ is well defined. On the other hand, $A^* \cap B^*$ is well defined and $B^* \cap A^*H^* \ge A^* \cap B^*$. Hence $(A^* \cap B^*) \cap (B^* \cap A^*H^*)$ is well defined and so is $A^* \cap (B^* \cap A^*H^*)$. Thus $A^*(B^* \cap A^*H^*)$ and A^*B^* are well defined by Theorem 2. Hence, simultaneously with $A^*(B^* \cap A^*H^*) = A^*B^* \cap A^*H^*$, we obtain that $A^*B^* \cap A^*H^*$ is well defined. Let $G^* \triangleright A^*B^*$. Then $(A^*B^*)(A^*H^*)$ is well defined and so is $(A^*B^*)H^*$. Thus, by Theorem 2, $A^*B^* \cap H^*$ is well defined. Hence A^*B^* has the *I*-property in G^* .

Lemma 4. Let $G^* \triangleright \triangleright A^* \triangleright B^*$ and let $G^* \triangleright \triangleright H^* \triangleright C^*$. Suppose A^*, B^* and C^* have the *I*-property in G^* . Then $B^*(A^* \cap C^*)$ and $B^*(A^* \cap H^*)$ are well defined. Furthermore $B^*(A^* \cap C^*)$ has the *I*-property in $B^*(A^* \cap H^*)$.

Proof. It is easy to see that $B^*(A^* \cap C^*)$ and $B^*(A^* \cap H^*)$ are well defined. Furthermore $G^* \triangleright \triangleright B^*(A^* \cap H^*)$. Since B^* and $A^* \cap C^*$ have the *I*-property in G^* , those have the *I*-property in $B^*(A^* \cap H^*)$. Moreover $B^*(A^* \cap H^*) \triangleright B^*(A^* \cap C^*)$ and $B^*(A^* \cap H^*) \triangleright B^*$. Hence, by Lemma 3, $B^*(A^* \cap C^*)$ has the *I*-property in $B^*(A^* \cap H^*)$.

From Proposition 1, Lemma 4 and the well known results, we have following

Lemma 5. Let

(i) $G^* = K_0^* \triangleright K_1^* \triangleright \cdots \triangleright K_r^* = A^*,$

(ii) $G^* = L_0^* \triangleright L_1^* \triangleright \cdots \triangleright L_s^* = A^*$

be two I-normal series from G^* to A^* . Then $K_i^*(K_{i-1}^* \cap L_j^*)$ $(=K_{i,j}^*; r \ge i \ge 1; s \ge j \ge 0)$ and $L_j^*(L_{j-1}^* \cap K_i^*)$ $(=L_{j,i}^*; s \ge j \ge 1; r \ge i \ge 0)$ are well defined. Furthermore, for each i, j $(r \ge i \ge 1; s \ge j \ge 0)$, $K_{i,j}^*$ has the I-property in G^* and

(1) $K_{i-1}^* = K_{i,0}^* \triangleright K_{i,1}^* \triangleright \cdots \triangleright K_{i,s}^* = K_i^*.$

Moreover, for each i,j (r \geqslant $i \geqslant$ 0; s \geqslant $j \geqslant$ 1), $L_{j,i}^*$ has the I-property in G* and

(2) $L_{j-1}^* = L_{j,0}^* \triangleright L_{j,1}^* \triangleright \cdots \triangleright L_{j,r}^* = L_j^*.$

Joining the I-normal series (1), respectively (2), together, we obtain refinements of the I-normal series (i) and (ii) for which $K_{i,j-1}^*/K_{i,j}^*$ $\leftrightarrow L_{j,i-1}^*/L_{j,i}^*$ is a one to one correspondence of their factors such that corresponding factors are isomorphic.

By Lemma 5 and the well known procedure, we have the following

Z. GOSEKI

Theorem 3 (Jordan-Hölder Theorem). If

 $G^* = K_0^* \ge K_1^* \ge \cdots \ge K_r^* = A^*$ and $G^* = L_0^* \ge L_1^* \ge \cdots \ge L_s^* = A^*$ are two I-composition series from G^* to A^* , then r=s. Furthermore there is a permutation π of $\{1, \dots, r\}$ such that K_{i-1}^*/K_i^* is isomorphic to $L_{\pi(i)-1}^*/L_{\pi(i)}^*$ for each $i=1, \dots, r$.

References

- Z. Goseki: On Sylow subgroups and an extension of groups. Proc. Japan Acad., 50, 576-579 (1974).
- [2] O. Tamaschke: A generalization of subnormal subgroup. Arch. Math., 19, 337-347 (1968).
- [3] O. Wyler: Ein Isomorphiesatz. Arch. Math., 14, 13-15 (1963).