148. On a Theorem of Ph. Bénilan Concerning Semigroups Systems

By Akira Maruyama
Department of Mathematics, Gakushuin University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 13, 1976)

Let X be a real Banach space. By the duality map of X into X^{*}, the dual space of X, we mean the multivalued mapping F of X into X^{*} defined by $F x=\left\{f \in X^{*} ;\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}$. The tangent functional $\tau(x, y)$ on $X \times X$ is defined by $\tau(x, y)=\lim _{t \downarrow 0} t^{-1}(\|x+t y\|-\|x\|)$ for $x, y \in X$, and it is known that $\tau(x, y)$ satisfies the following conditions: (a) $\tau(x, y)$ $\leqq\|y\|$, (b) $\tau\left(x, y_{1}+y_{2}\right) \leqq \tau\left(x, y_{1}\right)+\tau\left(x, y_{2}\right)$, (c) $\tau(x, a y)=a \cdot \tau(x, y)$ for $a \geqq 0$, (d) $-\tau(x,-y) \leqq \tau(x, y)$, (e) $\tau(x, a x)=a\|x\|$ for real a, (f) $\|x\| \cdot \tau(x, y)$ $=\sup _{f \in F_{x}}\langle y, f\rangle$. By a semigroups system on a closed set $D \subseteq X$, we mean a family $\left\{S_{y}(t) ; t \geqq 0, y \in X\right\}$ of operators from D into itself satisfying (1) $S_{y}(0)=I$ (the identity), $S_{y}(t+s)=S_{y}(t) S_{y}(s)$,
(2) $\lim _{t \downarrow 0} S_{y}(t) x=x$ for $x \in D$,

$$
\begin{equation*}
\left\|S_{y_{1}}(t) x_{1}-S_{y_{2}}(t) x_{2}\right\| \leqq\left\|S_{y_{1}}(s) x_{1}-S_{y_{2}}(s) x_{2}\right\|+\int_{s}^{t} \tau\left(S_{y_{1}}(\sigma) x_{1}-S_{y_{2}}(\sigma) x_{2}, y_{1}\right. \tag{3}
\end{equation*}
$$

$\left.-y_{2}\right) d \sigma$ for $t \geqq s \geqq 0$ and $x_{1}, x_{2} \in D$ with $y_{1}, y_{2} \in X$.
A multivalued operator A defined on $D(A) \subseteq X$ with values in X is called accretive if $\tau\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \geqq 0$ for $y_{i} \in A x_{i}(i=1,2)$, and an accretive operator A is called m-accretive if the range $R(I+A)=\{x+y$; $y \in A x, x \in D(A)\}=X$. In this note, we shall discuss the relation between semigroups systems and a family of m-accretive operators. We firstly prove the following

Theorem I. If A is an m-accretive operator, then the operator $A-y(D(A) \ni x \rightarrow A x-y)$ is also m-accretive and there exists a semigroups system $\left\{S_{y}(t) ; t \geqq 0, y \in X\right\}$ on the closure $\overline{D(A)}$ of $D(A)$ such that for each $x \in \overline{D(A)}$ we have $S_{y}(t) x=\lim _{210}(I+\lambda(A-y))^{-[t / \lambda]} . x$ uniformly in t on every bounded interval of $[0, \infty)$.

Proof. The proof of (1) and (2) is given by the Crandall-Liggett theorem and (3) is shown in a slightly different form by Bénilan (Thèse, Orsay (1972)). To give a straightforward proof of (3), we shall prepare the following inequality (suggested by I. Miyadera) :

$$
\begin{align*}
& \left\|S_{y}(t) x-x_{0}\right\| \leqq\left\|S_{y}(s) x-x_{0}\right\|+\int_{s}^{t} \tau\left(S_{y}(\sigma) x-x_{0}, y-y_{0}\right) d \sigma \tag{3}\\
& \text { for } x \in D(A), y_{0} \in A x_{0} \text { and } t \geqq s \geqq 0 .
\end{align*}
$$

For the proof of (3)', we observe the m-accretiveness of $A-y$ so that we define the pseudo-resolvent $J_{\lambda, y}=(I+\lambda(A-y))^{-1}$ for $\lambda>0$ and make use of the fact that $u_{k}=J_{\lambda, y}^{k} x$ satisfies the difference equation: $\lambda^{-1}\left(u_{k}\right.$ $\left.-u_{k-1}\right)+A u_{k} \ni y, u_{0}=x$. We obtain, by (a)-(f), $\lambda^{-1}\left(\left\|J_{\lambda, y}^{k} x-x_{0}\right\|-\left\|J_{\lambda, y}^{k-1} x-x_{0}\right\|\right) \leqq-\tau\left(J_{\lambda, y}^{k} x-x_{0},-\lambda^{-1}\left(J_{\lambda, y}^{k} x-x_{0}-\left(J_{\lambda, y}^{k-1} x-x_{0}\right)\right)\right.$ $=-\tau\left(J_{\lambda, y}^{k} x-x_{0}, \lambda^{-1}\left(J_{\lambda, y}^{k-1} x-J_{\lambda, y}^{k} x\right)\right) \leqq \lambda^{-1}\left\langle\left(J_{\lambda, y}^{k} x-J_{\lambda, y}^{k-1} x\right), f /\|f\|\right\rangle$
for every $f \in F\left(J_{\lambda, y}^{k} x-x_{0}\right)$. By the accretiveness of $A-y$, there exists a $g \in F\left(J_{\lambda, y}^{k} x-x_{0}\right)$ such that $\left\langle-\lambda^{-1}\left(J_{\lambda, y}^{k-1} x-J_{\lambda, y}^{k} x\right)-\left(y-y_{0}\right), g\right\rangle \leqq 0$. Hence, by (f), we obtain successively

$$
\begin{aligned}
&\left\langle\lambda^{-1}\left(J_{\lambda, y}^{k} x-J_{\lambda, y}^{k-1} x\right), g /\|g\|\right\rangle \leqq\left\langle-\lambda^{-1}\left(J_{\lambda, y}^{k-1} x-J_{\lambda, y}^{k} x\right)+\left(y_{0}-y\right), g /\|g\|\right\rangle \\
&+\left\langle y-y_{0}, g /\|g\|\right\rangle \leqq\left\langle y-y_{0}, g /\|g\|\right\rangle \leqq \tau\left(J_{\lambda, y}^{k} x-x_{0}, y-y_{0}\right), \\
&\left\|J_{\lambda, y}^{k} x-x_{0}\right\| \leqq\left\|J_{\lambda, y}^{k-1} x-x_{0}\right\|+\lambda \tau\left(J_{\lambda, y}^{k} x-x_{0}, y-y_{0}\right) \\
&=\left\|J_{\lambda, y}^{k-1} x-x_{0}\right\|+\int_{k \lambda}^{(k+1) \lambda} \tau\left(J_{\lambda, y}^{k} x-x_{0}, y-y_{0}\right) d \sigma .
\end{aligned}
$$

Let $t \geqq s \geqq 0$ and add the latter for $k=[s / \lambda]+1, \cdots,[t / \lambda]$. Then

$$
\left\|J_{\lambda, y}^{[t / \lambda]} x-x_{0}\right\| \leqq\left\|J_{\lambda, y}^{[8 / \lambda]} x-x_{0}\right\|+\int_{([s / \lambda]+1) \lambda}^{([t / / \lambda+1) \lambda} \tau\left(J_{\lambda, y}^{[\sigma / \lambda]} x-x_{0}, y-y_{0}\right) d \sigma
$$

Since $\left\|J_{\lambda, y}^{[t / \lambda]} x-x_{0}\right\| \leqq\left\|J_{\lambda, y}^{[t / \lambda]} x-J_{\lambda, y}^{[t / \lambda]} x_{0}\right\|+\left\|J_{\lambda, y}^{[t / \lambda]} x_{0}-x_{0}\right\| \leqq\left\|x-x_{0}\right\|+t\|z\|$ with a $z \in A x_{0}-y$, we can get (3)' from the Lebesque-Fatou lemma and the upper-semicontinuity of the functional τ by taking the $\lim _{2 \downarrow 0}$ sup. Then, taking $x_{0}=J_{\lambda, y_{2}}^{m} x_{2}$ and $y_{0}=\lambda^{-1}\left(J_{\lambda, y_{2}}^{m-1} x_{2}-J_{\lambda, y_{2}}^{m} x_{2}\right)+y_{2}$ in (3)', we have

$$
\begin{aligned}
\left\|S_{y_{1}}(t) x_{1}-J_{\lambda, y_{2}}^{m} x_{2}\right\| \leqq & \left\|S_{y_{1}}(s) x_{1}-J_{\lambda, y_{2}}^{m} x_{2}\right\| \\
& +\int_{s}^{t} \tau\left(S_{y_{1}}(\sigma) x_{1}-J_{\lambda, y_{2}}^{m} x_{2}, y_{1}-\lambda^{-1}\left(J_{\lambda, y_{2}}^{m-1} x_{2}-J_{\lambda, y_{2}}^{m} x_{2}\right)-y_{2}\right) d \sigma,
\end{aligned}
$$

where the integrand is, by (b), (a) and (e), smaller than

$$
\lambda^{-1}\left(\left\|S_{y_{1}}(t) x_{1}-J_{\lambda, y_{2}}^{m-1} x_{2}\right\|-\left\|S_{y_{1}}(\sigma) x_{1}-J_{\lambda, y_{2}}^{m} x_{2}\right\|\right)+\tau\left(S_{y_{1}}(\sigma) x_{1}-J_{\lambda, y_{2}}^{m} x_{2}, y_{1}-y_{2}\right)
$$

Let $0 \leqq a<b<\infty$ and $k=[a / \lambda], i=[b / \lambda]$. Then, adding the above inequality for $m=k+1, \cdots, i$ and taking the $\lim _{\lambda+0}$ sup, we have

$$
\begin{array}{r}
\int_{a}^{b}\left(\left\|S_{y_{1}}(t) x_{1}-S_{y_{2}}(\xi) x_{2}\right\|-\left\|S_{y_{1}}(s) x_{1}-S_{y_{2}}(\xi) x_{2}\right\|\right) d \xi \leqq \int_{s}^{t}\left(\left\|S_{y_{1}}(\sigma) x_{1}-S_{y_{2}}(a) x_{2}\right\|\right. \\
\left.-\left\|S_{y_{1}}(\sigma) x_{1}-S_{y_{2}}(b) x_{2}\right\|\right) d \sigma+\int_{s}^{t} d \sigma \int_{a}^{b} \tau\left(S_{y_{1}}(\sigma) x_{1}-S_{y_{2}}(\xi) x_{2}, y_{1}-y_{2}\right) d \xi
\end{array}
$$

and so we obtain (3) by applying Lemma 1.2 in Bénilan's Thèse.
Now we are able to give a straightforward proof, based upon the idea of the product integral, of the following theorem of Bénilan:

Theorem II. Given a semigroups system $\left\{S_{y}(t) ; t \geqq 0, y \in X\right\}$ on a closed set D in X, there exists exactly one m-accretive operator A such that $\overline{D(A)}=D$ and for all $x \in D$ we have $S_{y}(t) x=\lim _{\lambda \downarrow 0}(I+\lambda(A-y))^{-[t / \lambda]} \cdot x$ uniformly on every bounded interval of $[0, \infty)$.

Proof. Let \mathscr{I}_{x} be a mapping from $C([0, T] ; X)$ into itself given by $\mathscr{I}_{x}: C([0, T] ; X) \ni u=u(t) \rightarrow \prod_{0}^{t} S_{y-u(\tau)}(d \tau) x$, where the product integral $\prod_{0}^{t} S_{y-u(\tau)}(d \tau) x$ is defined as below: Let $\left\{\mathcal{P}_{\alpha}: 0=t_{0}^{\alpha}<t_{1}^{\alpha}<\ldots<t_{n(\alpha)}^{\alpha}\right.$
$=t ; \alpha \in \mathcal{A}\}$ be a net of partitions of $[0, t]$ with α contained in a directed set \mathcal{A} such that $\lim _{\alpha \in \mathcal{A}} \max _{1 \leq i \leq n(\alpha)}\left|t_{i}^{\alpha}-t_{i-1}^{\alpha}\right|=0$. Then we can show that the net of product $\prod_{i=1}^{n(\alpha)} S_{y-u\left(\tau_{i}^{\alpha}\right)}\left(t_{i}^{\alpha}-t_{i-1}^{\alpha}\right) \cdot x$, associated with the partition \mathscr{P}_{α}, strongly converges to a certain point of X whenever $\lim _{\alpha \in \mathcal{A}} \max _{1 \leq i \leq n(\alpha)}\left|t_{i}^{\alpha}-t_{i-1}^{\alpha}\right|$ $=0$, irrespective of the choice of points $\tau_{i}^{\alpha} \in\left[t_{i-1}^{\alpha}, t_{i}^{\alpha}\right)$. In fact, let \mathcal{P}_{α} and \mathscr{Q}_{β} be partitions of $[0, t)$, and let \mathscr{P}_{r} be the partition obtained by superposing these two partitions. Then we have, by (1),

$$
\begin{aligned}
& \prod_{i=1}^{n(\alpha)} S_{y-u\left(\tau_{i}^{\alpha}\right)}\left(t_{i}^{\alpha}-t_{i-1}^{\alpha}\right) x-\prod_{i=1}^{n(\beta)} S_{y-u\left(\tau_{i}^{\beta}\right)}\left(t_{i}^{\beta}-t_{i-1}^{\beta}\right) x \\
& \quad=\prod_{j=1}^{n(\gamma)} S_{y-u\left(\sigma \sigma_{j}^{r, \alpha}\right)}\left(t_{j}^{r}-t_{j-1}^{r}\right) x-\prod_{j=1}^{n(r)} S_{y-u\left(o_{j}^{r}, \beta\right)}\left(t_{j}^{r}-t_{j-1}^{r}\right) x=I_{n(r)}
\end{aligned}
$$

where $\sigma_{j}^{\gamma, \alpha} \in\left\{\tau_{i}^{\alpha} ; 1 \leqq n \leqq(\alpha)\right\}$ and $\sigma_{j}^{\gamma, \beta} \in\left\{\tau_{i}^{\beta} ; 1 \leqq i \leqq n(\beta)\right\}$. Hence we have, by (3) and (a),

$$
\begin{align*}
I_{n(r)}= & I_{n(r)-1}+\int_{t_{n(r)-1}^{r}}^{t_{n(r)}^{\tau_{n}^{r}}} \tau\left(S_{y-u\left(\sigma_{n(r)-1}^{r, \alpha}\right)}\left(s-t_{n(r)-1}^{r}\right) \prod_{j=1}^{n(r)-1} S_{y-u\left(\sigma_{j}^{r, \alpha}\right)}\left(t_{j}^{r}-t_{j-1}^{r}\right) x\right. \\
& -S_{y-u\left(\sigma_{n(r)-1}^{r, \beta}\right.}\left(s-t_{n(r)-1}^{\gamma}\right) \prod_{j=1}^{n(r)-1} S_{y-u\left(\sigma_{n(r)-1}^{r, \beta}\right)}\left(t_{j}^{r}-t_{j-1}^{r}\right) x, \\
& \left.-u\left(\sigma_{n(\gamma)-1}^{r, \alpha}\right)+u\left(\sigma_{n(r)-1}^{r, \beta}\right)\right) d s \tag{4}\\
\leqq & I_{n(r)-1}+\left|t_{n(r)}^{r}-t_{n(r)-1}^{r}\right| \cdot\left\|u\left(\sigma_{n(r)-1}^{r, \alpha}\right)-u\left(\sigma_{n(r)-1}^{\gamma, \beta}\right)\right\| \\
\leqq & \sum_{j=1}^{n(r)}\left|t_{j}^{r}-t_{j-1}^{r}\right| \cdot\left\|u\left(\sigma_{j-1}^{\gamma, \alpha}\right)-u\left(\sigma_{j-1}^{\gamma, \beta}\right)\right\| .
\end{align*}
$$

Thus $\prod_{0}^{t} S_{y-u(\tau)}(d \tau) x=\lim _{r \in \mathcal{A}} \prod_{j=0}^{n(\tau)} S_{y-u\left(\tau \tau_{j}\right)}\left(t_{j}^{r_{j}}-t_{j-1}^{r}\right) x$ exists.
The above obtained mapping \mathscr{I}_{x} satisfies the following inequality

$$
\left\|\mathscr{I}_{x} u-\mathscr{I}_{x} v\right\|_{C([0, T] ; x)}
$$

$$
\begin{equation*}
\leqq \int_{0}^{T}\|u(t)-v(t)\| d t\left(\|u-v\|_{C_{([0, T ; X)}}=\sup _{t \in[0, T]}\|u(t)-v(t)\|\right) \tag{5}
\end{equation*}
$$

so that, we have
(5) $\quad\left\|\mathscr{I}_{x}^{n} u-\mathscr{I}_{x}^{n} v\right\|_{C([0, T]: X)} \leqq(n!)^{-1} T^{n}\|u-v\|_{C([0, T] ; X)} \quad(n=1,2, \cdots)$.

For the proof of (5), we prove, similarly as (4),

$$
\begin{gathered}
\left\|\prod_{j=1}^{n(\alpha)} S_{y-u\left(\tau_{j}^{\alpha}\right)}\left(t_{j}^{\alpha}-t_{j-1}^{\alpha}\right) x-\prod_{j=1}^{n(\alpha)} S_{y-v\left(\tau_{j}^{\alpha}\right)}\left(t_{j}^{\alpha}-t_{j-1}^{\alpha}\right) x\right\| \\
\leqq \sum_{i=1}^{n\left(\sum_{i}^{\alpha}\right.}\left(t_{i}^{\alpha}-t_{i-1}^{\alpha}\right) \cdot\left\|u\left(\tau_{i}^{\alpha}\right)-v\left(\tau_{i}^{\alpha}\right)\right\|
\end{gathered}
$$

and take the $\lim _{\alpha \in \mathcal{A}}$
By virtue of (5) ${ }^{\prime}, \mathscr{I}_{x}^{n}$ is a strictly contractive mapping in $C([0, T] ; X)$ for sufficiently large n and so there exists one and only one fixed point of \mathscr{I}_{x} in $C([0, T] ; X)$. Hence, for any $y \in X, x$ and $x^{\prime} \in X$, there exists the unique solutions u_{0} and v_{0} in $C([0, T] ; X)$ respectively of the product integral equations of the Volterra type $u_{0}(t)=\prod_{0}^{t} S_{y-u_{0}(\tau)}(d \tau) x$ and $v_{0}(t)=\prod_{0}^{t} S_{y-v_{0}(\tau)}(d \tau) x^{\prime}$. Since T was arbitrary, these solutions are
global ones and each of them has the limit as $t \rightarrow \infty$, which is the value of the resolvent of an m-accretive operator that we are intending to find. The proof: Let $T_{y}(t) x$ be the mapping given by $x \rightarrow u_{0}(t)$. Then we can prove that $T_{y}(t)$ is a semigroup on D and satisfies

$$
\begin{equation*}
\left\|T_{y}(t)-T_{y}(t) x^{\prime}\right\| \leqq\left\|T_{y}(s) x-T_{y}(s) x^{\prime}\right\|-\int_{s}^{t}\left\|T_{y}(\sigma) x-T_{y}(\sigma) x^{\prime}\right\| d \sigma \tag{6}
\end{equation*}
$$

for $t \geqq s \geqq 0$. To this purpose, we prove, similarly as (5)

$$
\begin{equation*}
+\int_{s}^{t} \tau\left(\mathscr{I}_{x} u(\sigma)-\mathscr{I}_{x^{\prime}} v(\sigma),-u(\sigma)+v(\sigma)\right) d \sigma \tag{7}
\end{equation*}
$$

where u and $v \in C([0, T] ; X)$ and $t \geqq s \geqq 0$. Hence we have
$\left\|\mathscr{I}_{x}^{n} u(t)-\mathscr{I}_{x^{\prime}}^{n} v(t)\right\| \leqq\left\|\mathscr{I}_{x}^{n} u(s)-\mathscr{I}_{x^{\prime}}^{n} v(s)\right\|$

$$
+\int_{s}^{t} \tau\left(\mathscr{I}_{x}^{n} u(\sigma)-\mathscr{I}_{x^{n}}^{n} v(\sigma),-\mathscr{I}_{x}^{n-1} u(\sigma)+\mathscr{I}_{x^{\prime}}^{n-1} v(\sigma)\right) d \sigma, \quad(n=1,2, \cdots)
$$

Thus we obtain (6) by (e) and by letting $n \rightarrow \infty$. In fact, the $\lim _{n \rightarrow \infty} \mathscr{I}_{x}^{n} u=u_{0}$ is the unique fixed point $T_{y}(t) x$ of \mathscr{I}_{x}, i.e., $u_{0}(t)=\prod_{0}^{t} S_{y-u_{0}(\tau)}$ $(d \tau) x$. The obtained $T_{y}(t)$ is a contraction operator with Lipschitz constant e^{-t}, since $\left\|T_{y}(t) x-T_{y}(t) x^{\prime}\right\|+\int_{0}^{t}\left\|T_{y}(\sigma) x-T_{y}(\sigma) x^{\prime}\right\| d \sigma$ is monotone increasing in t by (6). We next show that $T_{y}(t)$ has the property (1). In fact, we have

$$
\begin{aligned}
T_{y}(t+s) x & =u_{0}(t+s)=\prod_{0}^{t+s} S_{y-u_{0}(\tau)}(d \tau) x=\prod_{s}^{t+s} S_{y-u_{0}(\tau)}(d \tau) \cdot \prod_{0}^{s} S_{y-u_{0}(\tau)}(d \sigma) x \\
& =\prod_{0}^{t} S_{y-u_{0}(\tau+s)}(d \tau) u_{0}(s)=\prod_{0}^{t} S_{y-u_{0}(\tau+s)}(d \tau) T_{y}(t) x
\end{aligned}
$$

On the other hand, we have $T_{y}(t) T_{y}(s) x=\prod_{0}^{t} S_{y-\omega_{s}(\tau)}(d \tau) T_{y}(s) x=\omega_{s}(t)$ and hence, by the uniqueness of the solution of the product integral equation, we obtain $\omega_{s}(t)=u_{0}(t+s)$, i.e., $T_{y}(t) T_{y}(s) x=T_{y}(t+s) x$. Thus, by the Lipschitz constant e^{-t} of $T_{y}(t)$, we have $\lim _{t \rightarrow \infty} u_{0}(t)=\lim _{t \rightarrow \infty} T_{y}(t) x=x_{0}$, where $x_{0}=T_{y}(t) x_{0}$. Hence we must have
$x_{0}=S_{y-x_{0}}(t) x_{0} \quad$ for all $t \geqq 0$, because x_{0} is the solution of $u(t)=\prod_{0}^{t} S_{y-u(\tau)}(d \tau) x_{0}, u(0)=x_{0}$. We put (9)

$$
\begin{equation*}
A=\left\{\{x, y\} ; S_{y}(t) x=x \text { for all } t \geqq 0\right\} . \tag{8}
\end{equation*}
$$

The accretiveness of A is easily seen by putting $S_{y_{1}}(t) x_{1}=x_{1}$ and $S_{y_{2}}(t) x_{2}=x_{2}$ in (3) and so the m-accretiveness of A is easily seen from (8). Hence by (3) we obtain (3)' whenever $\left\{x_{0}, y_{0}\right\} \in A$. It is proved by Bénilan that if $S_{y}(t) x$ satisfies (3)' then the orbit of $S_{y}(t) x$ is contained in $\overline{D(A)}$. Therefore, we can say that $\overline{D(A)}=D$. In order to complete our proof, we have to show that $S_{y}(t) x=\lim _{\lambda \downarrow 0}(I+\lambda(A-y))^{-[t / \lambda]} \cdot x$. However, this proof is easily obtained similarly to that of (3)'.

