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Let v be the finite Hilbert transform on L(0, ) defined by

(v)(t)= Jozz cos t cos 8

where the integral is the Cauchy principal value. In contrast with the
development of the spectral theory of a finite Hilbert transform A of
the form

m x--y
acting on L.(a, b), which occurs in airoil theory, the singular integral
operator V on L(0, ) has not received much attention, while it plays
an important role in the theory of singular integral equations (cf. [3]).
Let p(t)--sin nt (n=1,2, ...) and (t)-cos nt (n----0, 1,2, ...). Then
the sequences {} and {@} o vectors are both orthogonal bases in
L.(0, u) and as is seen in Hochstadt [3;p. 160], V is an isometry such
that

Vo --i (n 1, 2, ...).
The first object of this paper is to prove the following decisive result"

Theorem. The finite Hilbert transform V on L.(0, ) is a unilat-
eral shift of multiplicity 1.

Next we shall indicate that this result actually offers a new tech-
nique in the spectral representation theory for the airfoil operator A
and enables us to remove somewhat complicated integral calculations
involved in the conventional treatments [4] and [7].

1. The proof of the theorem is done independently of the airfoil
operator on L.(--1, 1). First observe that the operator V is symme-
trizable in the sense of P. Lax [5] (or symmetrizable operators, see also
[1] and [9]). Indeed, for a pair of vectors o, in Lz(0, ), we define a
new inner product (,) by

)= (t)(t) sin tdt.(,

Then it is obviously bounded on L(0, ) and from the behavior of V on
the basis {o} it is straightforward to verify that

(V,, )--(, V)= --i .I: sin (m+n)t sin tdt=O

for every n, m. It follows immediately from this that V is self-adjoint
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with respect to the new inner product.
Proof of Theorem. Since the operator V is an isometry, we de-

compose it into the direct sum
V V0V

o a unitary operator V0 and a unilateral shift V acting its reducing
subspaces H0 and H,, respectively. Then the unitary direct summand
V0 is also symmetrizable. But, as is known, a normal operator can be
symmetrizable only if it is self-adjoint (cf. [9]). Thus Vo is unitary
and sel-adjoint. This implies that t least one of the values 1 must
be an eigenvalue of V whenever the direct summand Vo exists, i.e.,
H0{0}. We shall show, however, that V does not admit either of the
values +/-1 as eigenvalue. Suppose that o is a vector in L.(0, z) such
that Vo--o. Consider the Fourier sine expansion of o, i.e.,

Then Vo=,V=,(--i), and hence we have, (-i)=.
Thus it ollows that the nth Fourier cosine coefficient of is equal to
(--i), that is,

2 y: o(t)cos nt dt=(--i)2- : (t)sin nt dr,

that .[: (t)etdt--O (n-l, 2,...). But {ett} (n--l, 2,...) is com-so

plete in L(0, ),) and so o(t)--0 a.e. Next, applying the same argu-

ment to a vector such that V=--, we reach [ (t)e-ttdt=O and

then we find --0. Therefore, what we have just proved is that each
of the values _+ 1 is not an eigenvalue of V. Consequently, the unitary
direct summand must vanish and hence V is nothing but a unilateral
shift.

To see the co-rank of V (called its multiplicity, cf. [2]), it is enough
to recall the behavior of V on the ’s. Then it is evident that the
orthogonal complement of the range of V is one dimensional (indeed, it
is the scalar multiples of the identity unction). This implies that the
co-rank of V is 1. Overall, it turns out that {1, V1, ..., VI, ) is an
orthogonal basis in L(0, ). The proof is now complete.

2. Now let us describe briefly how our result influences on the
spectral analysis of the airfoil operator A on L(--1,1). Consider the
completion K of L(0, )with the new norm Iol=(o,) and let 17 de-
note the extension of V to K. Then 17 is a self-adjoint contraction.

1) For the completeness of {n}, Levinson’s classic [6] states more generally
that {t:/n>O} is complete in L1 over an interval of length L if

lim inf {n//n} >L/2m
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Furthermore, appealing to the mapping x--cos t of [0, ] onto [--1, 1],
it is easily verified that ]7 is unitarily equivalent to the operator A.
As mentioned above, the identity function 1 in L2(0, z) is a cyclic vector
for V and the new norm I, is evidently weaker than the usual norm in
L2(0, ). Hence 1 is also a cyclic vector for ]?. From this we immedi-
ately reach a conclusion that A is a self-ad]oint contraction having a
cyclic vector, (compare with the proof in [7]). Consequently, applying
the spectral representation theorem for a general normal opertor to A,
we can assert that A is unitarily equivalent to the multiplication oper-
ator M"

(Mh)()=h()
on L2(9,/), where 9 is the spectrum and u is a regular Borel measure
on/2 induced by the spectral measure for A. But the estimate of the
measure p and the fact that/2 is the interval [--1, 1], which are nowa-
days well known, don’t follow directly from our result. Indeed, we
can introduce various different inner products (,).(a e A) on L2(0, )
which make the shift-adjoint, i.e.,

(V, ).=(, V),
and the spectrum of a self-adjoint contraction I?., the extension of V
with respect to (,)., is not necessarily the interval [--1, 1]. It should
be pointed out, however, that the spectrum of l? and its spectral
measure (which are the same as/2 and/, respectively) are estimated,
without any difficulties, from two general theorems on commutators
due to C. Putnam [8 Theorem 2.2.1 and Theorem 2.2.4]. Thus, accord-
ing to the linkages between the unilateral shift and finite Hilbert trans-
forms, one can complete the spectral representation for the airfoil oper-
ator A on L(--1, 1) by purely operator theoretic arguments. In the
same manner, the spectral representation or the airfoil operator on
L.(a, b)(b may be +c)may be obtained via an appropriate mapping
of [0, ] onto [a, b].
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