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147. The Finite Hilbert Transform on L,(0,7) is a Shift
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Let v be the finite Hilbert transform on L,(0, z) defined by
Vo)t)== J‘ sin s s)ds,
Vo)) = o cost— coss¢()
where the integral is the Cauchy principal value. In contrast with the

development of the spectral theory of a finite Hilbert transform A of
the form

AN @)= 1j /@) TP gy

acting on L,(a, b), which occurs in airfoil theory, the singular integral
operator V on L,0, z) has not received much attention, while it plays
an important role in the theory of singular integral equations (cf. [3]).
Let ¢,(f)=sin nt (n=1,2, .. .) and ¥,(f)=cos nt (r=0,1,2, --.). Then
the sequences {¢,} and {y,} of vectors are both orthogonal bases in
L,0,r) and as is seen in Hochstadt [3; p. 160], V is an isometry such
that
V§0n= _i"l"n (/”':1’ 2, )

The first object of this paper is to prove the following decisive result:

Theorem. The finite Hilbert transform V on LX0,r) is a unilat-
eral shift of multiplicity 1.

Next we shall indicate that this result actually offers a new tech-
nique in the spectral representation theory for the airfoil operator A
and enables us to remove somewhat complicated integral calculations
involved in the conventional treatments [4] and [7].

1. The proof of the theorem is done independently of the airfoil
operator on L,(—1,1). First observe that the operator V is symme-
trizable in the sense of P. Lax [5] (for symmetrizable operators, see also
[11 and [9]). Indeed, for a pair of vectors ¢,y in L,(0,x), we define a
new inner product (,) by

(¢, «;»)==J': S(E)T(D) sin tdt.

Then it is obviously bounded on L,(0, #) and from the behavior of V on
the basis {¢,} it is straightforward to verify that

(V¢n’ §0m) - (¢n’ VSDm) =—1 J.‘ sin (m +n)t sin tdt=0
0
for every n,m. It follows immediately from this that V is self-adjoint



No. 10] Finite Hilbert Transform on L,(0,#) is a Shift 545

with respect to the new inner product.
Proof of Theorem. Since the operator V is an isometry, we de-
compoge it into the direct sum
V=V ,®V,
of a unitary operator V, and a unilateral shift V, acting its reducing
subspaces H, and H,, respectively. Then the unitary direct summand
V, is also symmetrizable. But, as is known, a normal operator can be
symmetrizable only if it is self-adjoint (cf. [9]). Thus V, is unitary
and self-adjoint. This implies that at least one of the values 41 must
be an eigenvalue of V whenever the direct summand V, exists, i.e.,
H,+#{0}. We shall show, however, that V does not admit either of the
values +1 as eigenvalue. Suppose that ¢ is a vector in L,(0, z) such
that Vo=¢. Consider the Fourier sine expansion of ¢, i.e.,
50=; M
Then Vo=>3, 2,Vo,=2 1 2,(—9v,, and hence we have
; ("‘i)zn\b'n=9o'
Thus it follows that the nth Fourier cosine coefficient of ¢ is equal to
(—1)2,, that is,
2

2 I o(t) cos nt dt=(—1)— f o(t) sin nt dt,
T Jo T Jo

so that j oHemdt=0 (n=1,2,...). But {¢"} (n=1,2,...) is com-
0
plete in L,(0, z),” and so ¢(f)=0 a.e. Next, applying the same argu-
ment to a vector ¢ such that Vo= —¢, we reach r p(t)e"tdt=0 and
0

then we find ¢=0. Therefore, what we have just proved is that each
of the values +1 is not an eigenvalue of V. Consequently, the unitary
direct summand must vanish and hence V is nothing but a unilateral
shift.

To see the co-rank of V (called its multiplicity, cf. [2]), it is enough
to recall the behavior of V on the ¢,’s. Then it is evident that the
orthogonal complement of the range of V is one dimensional (indeed, it
is the scalar multiples of the identity function). This implies that the
co-rank of Vis1l. Overall, it turns out that {1,V1,...,V"1,...}isan
orthogonal basis in L,(0,z). The proof is now complete.

2. Now let us describe briefly how our result influences on the
gpectral analysis of the airfoil operator A on L,(—1,1). Consider the
completion K of L,0, ) with the new norm [¢|=(¢p, 9)* and let V de-
note the extension of V to K. Then V is a self-adjoint contraction.

1) For the completeness of {eint}, Levinson’s classic [6] states more generally

that {et#nt: u,>0} is complete in L, over an interval of length L if
lim inf {n/ps}>L/2x.
N—00
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Furthermore, appealing to the mapping x=cos ¢ of [0, z] onto [—1, 1],
it is easily verified that V is unitarily equivalent to the operator A.
As mentioned above, the identity function 1 in L,(0, z) is a cyclic vector
for V and the new norm |,| is evidently weaker than the usual norm in
L,(0,7). Hencelis also a cyclic vector for V. From this we immedi-
ately reach a conclusion that A is a self-adjoint contraction hoving o
cyclic vector, (compare with the proof in [7]). Consequently, applying
the spectral representation theorem for a general normal opertor to 4,
we can assert that A is unitarily equivalent to the multiplication oper-
ator M :
(Mh)(2) =2h(2)

on L,(£2, 1), where 2 is the spectrum and « is a regular Borel measure
on 2 induced by the spectral measure for A. But the estimate of the
measure p and the fact that @ is the interval [—1, 1], which are nowa-
days well known, don’t follow directly from our result. Indeed, we
can introduce various different inner products (, ). (« e 4) on L,0,r)
which make the shift-adjoint, i.e.,

(VSD, ‘lf)a=(¢, V‘l")a»

and the spectrum of a self-adjoint contraction V,, the extension of V
with respect to (, )., is not necessarily the interval [—1,1]. It should
be pointed out, however, that the spectrum of V and its spectral
measure (which are the same as 2 and p, respectively) are estimated,
without any difficulties, from two general theorems on commutators
due to C. Putnam [8 ; Theorem 2.2.1 and Theorem 2.2.4]. Thus, accord-
ing to the linkages between the unilateral shift and finite Hilbert trans-
forms, one can complete the spectral representation for the airfoil oper-
ator A on L, (—1,1) by purely operator theoretic arguments. In the
same manner, the spectral representation for the airfoil operator on
Ly(a, b) (b may be + o) may be obtained via an appropriate mapping
of [0, =] onto [a, b].
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