4. On Discontinuous Groups Acting on a Real Hyperbolic Space. II

By Takeshi MOROKUMA

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 12, 1977)

 0° . Let $G^{(n)}$ be the motion group of a real *n*-dimensional hyperbolic space H. In 1° we apply the two theorems in the preceding note [1] to give explicit fundamental domains and fundamental relations for arithmetic discrete subgroups of $G^{(n)}$ where $4 \leq n \leq 9$. In 2° we show some examples of discrete subgroups by giving fundamental domains in case n=3.

1°. We define an arithmetic group Γ of $G^{(n)}$. Let H be the upper half space $\{\xi = {}^{t}(\xi_{1}, \dots, \xi_{n}) \in \mathbb{R}^{n} | \xi_{n} \ge 0\}$ of \mathbb{R}^{n} with metric form $ds^{2} = \left(\sum_{j=1}^{n} d\xi_{j}^{2}\right)/\xi_{n}^{2}$. Let Q be the matrix of degree (n+1)

$$\begin{pmatrix} \mathbf{1}_{n-1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} \end{pmatrix}$$

where 1_{n-1} means the unit matrix of degree n-1. Let X_Q be a connected component of the hypersurface $\{x = {}^{t}(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} | {}^{t}x.Q.x = -1\}$ of \mathbb{R}^{n+1} . Then the motion group $G^{(n)}$ is the subgroup

$$g \in GL(n+1, R) | {}^{t}g.Q.g = Q, g(X_{Q}) = X_{Q} \}$$

of GL(n+1, R). Its action on $H=H^n$ is given by $g.\xi=\eta$ for

$$g = \begin{bmatrix} \sigma & \gamma_1 & \gamma_2 \\ {}^t \delta_1 & \alpha_1 & \alpha_2 \\ {}^t \delta_2 & \alpha_3 & \alpha_4 \end{bmatrix} \in G^{(n)}$$

 $\sigma \in M(n-1, \mathbf{R}), \ \gamma_i, \ \delta_i \in \mathbf{R}^{n-1} \ (i=1 \text{ or } 2), \ \alpha_i \in \mathbf{R} \ (1 \leq i \leq 4), \ {}^t\xi = ({}^t\xi', \xi_n), \ \xi' \in \mathbf{R}^{n-1} \text{ where } \eta \text{ is defined by } {}^t\eta = ({}^t\eta', \eta_n), \ \eta' \in \mathbf{R}^{n-1}, \ \eta' = \left({}^t\delta_2\xi' + \frac{1}{2}({}^t\xi\xi)\alpha_3\right)$

$$+\alpha_4\Big)^{-1}\Big(\sigma\xi'+\frac{1}{2}(\xi\xi)\gamma_1+\gamma_2\Big) \text{ and } \eta_n=\Big(\delta_2\xi'+\frac{1}{2}(\xi\xi)\alpha_3+\alpha_4\Big)^{-1}\xi_n. \text{ We de-}$$

note by $\Gamma^{(n)}$ the group $G^{(n)} \cap SL(n+1, \mathbb{Z})$. From now on we assume that $4 \leq n \leq 9$. We construct a fundamental domain F fit for $\Gamma^{(n)}$. We denote by Γ^{∞} the subgroup of $\Gamma = \Gamma^{(n)}$ fixing the point at infinity considered to be contained in ∂H and by \varDelta the set $\{\xi = {}^{t}(\xi_{1}, \dots, \xi_{n}) \in H | \xi_{1} + \xi_{2} < 1, \xi_{1} > \xi_{3}, \xi_{2} > \xi_{3}, \xi_{3} > \xi_{4} > \dots > \xi_{n-1} > 0\}$. Then \varDelta is a fundamental domain for Γ^{∞} , namely $\bigcup_{g \in \Gamma^{\infty}} g \overline{\varDelta} = H$ and $g \varDelta \cap \varDelta = \phi$ for any $g \in \Gamma^{\infty} - \{e\}$ where e means the unit element of $G^{(n)}$. For each $g \in \Gamma - \Gamma^{\infty}$ we denote

No. 1]

T. MOROKUMA

by D_g the set $\left\{ \boldsymbol{\xi} \in \boldsymbol{H} | \left| \boldsymbol{\xi} + \frac{1}{\alpha_3} \begin{pmatrix} \delta_2 \\ 0 \end{pmatrix} \right| \ge \sqrt{\frac{2}{\alpha_3}} \right\}$. Note that $\alpha_3 \ge 1$ for $g \in \Gamma - \Gamma^{\infty}$ and $\alpha_3 = 0$ for $g \in \Gamma^{\infty}$. The boundary of D_g is totally geodesic. Now let F denote the set $\Delta \cap \bigcap_{g \in \Gamma - \Gamma^{\infty}} D_{g}$. Then by standard arguments F is a fundamental domain for Γ . The assumption $n \leq 9$ means that F is equal to $\Delta \cap D_{g_1}$, where $g_1 = \begin{bmatrix} \rho & 0 & 0 \\ 0 & \mathbf{1}_{n-3} & 0 \\ 0 & 0 & \rho \end{bmatrix}$, ρ being $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, so that $D_{g_1} = \{\xi \in H | |\xi| \ge \sqrt{2}\}$. Thus F is an open n-dimensional simplex with totally geodesic faces and with one vertex (resp. two vertices) as cusp in case $n \leq 8$ (resp. n=9). The fitness structure $(\mathcal{P}, \mathcal{A})$ of F is defined as follows: Let $p_0^+, p_0^-, p_1, \dots, p_{n-1}$ and p_n be respectively the points ${}^{t}(1, 0, \dots, 0, 1), {}^{t}(0, 1, 0, \dots, 0, 1), \infty, {}^{t}(0, 0, \dots, 0, 1)$ $(0, \sqrt{2}), t(1/2, 1/2, 0, \dots, 0, \sqrt{3/2}), 1/2^{t}(1, 1, 1, \dots, 0, \sqrt{5}), \dots, 1/2^{t}(1, 1, 1, \dots, 0, \sqrt{5}))$ $\dots, 1, 0, \sqrt{9 - (n-1)}$ and $1/2^{t}(1, 1, \dots, 1, \sqrt{9 - n})$ of $H \cup \partial H$. The (n+1) points $p_0^+, p_0^-, p_1, p_2, p_4, \dots, p_n$ are the vertices of F and p_3 is the middle point of p_0^+ and p_0^- . Let H_i^+ (resp. H_i^-) $(1 \le i \le n)$ be the open (n-1)-simplex with vertices p_0^+ (resp. p_0^-), $p_1, \dots, p_{i-1}, p_{i+1}, \dots, p_n$. Clearly $\partial F = \bigcup_{i=1}^{n} (\overline{H}_{i}^{+} \cup \overline{H}_{i}^{-})$. We denote by \mathcal{P} the collection of simplices $F, H_i^+, H_i^ (1 \leq i \leq n)$ and the lower dimensional face simplices of H_i^+ or $H_{\overline{i}}$ $(1 \leq i \leq n)$. \mathcal{P} is a subdivision of \overline{F} . We can find the elements $g_i \in \Gamma^{\infty}$ $(2 \leq i \leq n)$ such that $g_i H_i^+ = H_i^-$. Notice that $g_1 H_1^+ = H_1^-$. Let \mathcal{A} be the subset $\{g_1, \dots, g_n\}$ of Γ . Then

Proposition 1. The pair $(\mathcal{P}, \mathcal{A})$ is fit for F in the sense of [1]. \mathcal{A} is a set of generators of $\Gamma^{(n)}$ $(4 \leq n \leq 9)$ whose fundamental relations are $g_i^2 = e$ $(1 \leq i \leq n, i \neq 3)$, $g_s^3 = e$, $(g_i^{-1}g_j)^2 = e$ $(1 \leq i < i+2 \leq j \leq n)$, $(g_i^{-1}g_{i+1})^3$ = e $(1 \leq i \leq n-2)$ and $(g_{n-1}^{-1}g_n)^4 = e$. In consequence $\Gamma/[\Gamma, \Gamma] = \mathbb{Z}/2\mathbb{Z}$ generated by g_n .

Remark. In case n=2 (resp. n=3), $\Gamma/[\Gamma, \Gamma] = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ (resp. $(\mathbb{Z}/2\mathbb{Z})^2$). The group $\Gamma^{(n)}$ $(n \leq 9)$ is a subgroup with index 2 of the group $G^{(n)} \cap GL(n+1,\mathbb{Z})$ which is generated by reflections. The latter group has been treated by Vinberg [2].

2°. We shall assume n=3. We define a polyhedron $F_{m,i}$ for each pair of integers $m \ge 2$, $l \ge 1$. By a sphere we shall mean an upper half sphere with centre $in \partial H$. Let H_0^+ be a sphere with centre c. Let $H_{1,0}^+, H_{1,0}^-, \dots, H_{m,0}^+, H_{m,0}^-$ be 2m-spheres of the same radius such that each $H_{i,0}^+$ or $H_{i,0}^-$ ($1 \le i \le m$) crosses normally H_0^+ and that each $H_{i,0}^-$ (resp. $H_{i,0}^+$) is tangent to $H_{i,0}^+$ (resp. $H_{i-1,0}^-$) ($1 \le i \le m$) at a point of the circle ∂H_0^+ , where $H_{0,0}^-$ means $H_{m,0}^-$. Assume that they are arranged counter-clock, wise around H_0^+ in the above order. Let $K_{1,1}^+, L_{1,1}^+, K_{2,1}^+, \dots, K_{m,1}^+, L_{m,1}^+$ be 2m spheres of the same radius and with centres outside H_0^+ such that

each $K_{i,1}^{*}$ (resp. $L_{i,1}^{*}$) crosses normally both $H_{i-1,0}^{-}$ and $H_{i,0}^{*}$ (resp. both $H_{i,0}^{*}$ and $H_{i,0}^{-}$) and is tangent to the three spheres $H_{0}^{*}, L_{i-1,1}^{*}, L_{i,1}^{*}$ (resp. $H_{0}^{*}, K_{i,1}^{*}, K_{i+1,1}^{*}$) (see the figure). They are uniquely determined and turn counterclockwise around H_{0}^{*} . Let V_{1} (resp. W_{1}) be the sphere with centre c such that each $H_{i,0}^{*}$ ($1 \leq i \leq m, \epsilon = \pm$) (resp. each $K_{i,1}^{*}, L_{i,1}^{*}$) ($1 \leq i \leq m$)) is tangent to V_{1} (resp. W_{1}) from the inside of V_{1} (resp. W_{1}). Let $H_{i,1}^{*}$ ($1 \leq i \leq m, \epsilon = \pm$) be the reflection of $H_{i,0}^{*}$ with respect to V_{1} . Let $K_{i,1}^{*}$ (resp. $L_{i,1}^{*}$) ($1 \leq i \leq m$) be the reflection of $K_{i,1}^{*}$ (resp. $L_{i,1}^{*}$) with respect to W_{1} . Inductively we define V_{j} (resp. W_{j}) ($2 \leq j \leq 2l$) to be the reflection of V_{j-1} (resp. $L_{j,1}^{*}$) ($1 \leq i \leq m, \epsilon = \pm, 2 \leq j \leq 2l$) be the reflection of $H_{i,j-1}^{*}$ with respect to V_{j} , $H_{i,j}^{*}$ ($1 \leq i \leq m, \epsilon = \pm, 2 \leq j \leq 2l$) be the reflection of $H_{i,j-1}^{*}$ (resp. V_{j}), $H_{i,j}^{*}$ ($1 \leq i \leq m, \epsilon = \pm, 2 \leq j \leq 2l$) be the reflection of $H_{i,j-1}^{*}$ (resp. V_{j}) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j-1}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j-1}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j-1}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j-1}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j-1}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j-1}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j}^{*}$ (resp. $L_{i,j}^{*}$) with respect to W_{2j-2} and $K_{i,j}^{*}$ (resp. $L_{i,j}^{*}$) ($1 \leq i \leq m, 2 \leq j \leq l$) be the reflection of $K_{i,j}^{*}$ (resp. $L_{i,j}^{*}$) with respect to W_{2j-1}^{*} . Let H_{0}^{*} be the sph

$$\left(\bigcap_{\substack{1\leq i\leq m\\ 0\leq j\leq 2l,\ s=\pm}}D_{H_{i,j}^{s}}\right)\cap\left(\bigcap_{\substack{1\leq i\leq m\\ 1\leq j\leq l,\ s=\pm}}\left(D_{K_{i,j}^{s}}\cap D_{L_{i,j}^{s}}\right)\right)\cap D_{H_{0}^{+}}\cap D_{H_{0}^{+}}^{*}$$

with 2(4ml+m+1)- faces, where D_H (resp. D_H^*) means the half space over (resp. under) the half sphere H. We denote by \mathcal{P} the naturally defined subdivision of $\overline{F}_{m,l}$. We denote each 2-dimensional face of F corresponding to the sphere $H_{i,j}^*$, etc. by the same letter. Let $\alpha_{i,j}$ ($1 \leq i \leq m, 0 \leq j \leq 2l$) be the element of G such that $\alpha_{i,j}H_{i,j}^*=H_{i,j}^-$, $\alpha_{i,j}F \cap F = \phi$ and $\alpha_{i,j}$ fixes the tangent point of $H_{i,j}^+$ and $H_{i,j}^-$. $\beta_{i,j}$ (resp. $\gamma_{i,j}$) ($1 \leq i \leq m, 1 \leq j \leq l$) be the element of G such that $\beta_{i,j}K_{i,j}^+=K_{i,j}^-$ (resp. $\gamma_{i,j}L_{i,j}^+=L_{i,j}^-$), $\beta_{i,j}F \cap F = \phi$ (resp. $\gamma_{i,j}F \cap F = \phi$) and $\beta_{i,j}$ (resp. $\gamma_{i,j}$) fixes the tangent point of $K_{i,j}^+$ and $K_{i,j}^-$ (resp. $L_{i,j}^+$ and $L_{i,j}^-$). Let γ be the element of G such that $\gamma H_0^+=H_0^-$, $\gamma F \cap F = \phi$ and γ stabilizes any line through c in ∂H . T. MOROKUMA

Proposition 2. Let \mathcal{A} be the collection of all the $\alpha_{i,j}, \beta_{i,j}, \gamma_{i,j}, \gamma_{i,j},$

Remark. $\Gamma_{m,l}$ is torsion free and the Betti numbers of $H/\Gamma_{m,l}$ are $b_0=1$, $b_1=b_2=2ml+m+l+1$ and $b_3=0$. The volume of $H/\Gamma_{m,l}$ equals to $8ml\left(2\varepsilon_0-\frac{1}{2}\int_0^{\pi/2m}\log\frac{1+\sin x}{1-\sin x}dx\right)$ where $\varepsilon_0=\sum_{n=0}^{\infty}(-1)^n\frac{1}{(2n+1)^2}$.

References

- T. Morokuma: On discontinuous groups acting on a real hyperbolic space.
 I. Proc. Japan Acad., 52(7), 359-362 (1976).
- [2] E. B. Vinberg: Discrete Groups Generated by Reflections in Lobacevskii Spaces. Math. USSR-Sbornik, Vol. 1, No. 3 (1967).