4. On Discontinuous Groups Acting on a Real Hyperbolic Space. II

By Takeshi Morokuma
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1977)

\mathbf{o}°. Let $G^{(n)}$ be the motion group of a real n-dimensional hyperbolic space \boldsymbol{H}. In 1° we apply the two theorems in the preceding note [1] to give explicit fundamental domains and fundamental relations for arithmetic discrete subgroups of $G^{(n)}$ where $4 \leqq n \leqq 9$. In 2° we show some examples of discrete subgroups by giving fundamental domains in case $n=3$.
$\mathbf{1}^{\circ}$. We define an arithmetic group Γ of $G^{(n)}$. Let \boldsymbol{H} be the upper half space $\left\{\xi={ }^{t}\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n} \mid \xi_{n} \geqq 0\right\}$ of \boldsymbol{R}^{n} with metric form $d s^{2}$ $=\left(\sum_{j=1}^{n} d \xi_{j}^{2}\right) / \xi_{n}^{2} . \quad$ Let Q be the matrix of degree $(n+1)$

$$
\left(\begin{array}{crr}
1_{n-1} & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right)
$$

where 1_{n-1} means the unit matrix of degree $n-1$. Let X_{Q} be a connected component of the hypersurface $\left\{x=\left.{ }^{t}\left(x_{1}, \cdots, x_{n+1}\right) \in \boldsymbol{R}^{n+1}\right|^{t} x . Q . x\right.$ $=-1\}$ of R^{n+1}. Then the motion group $G^{(n)}$ is the subgroup

$$
\left\{\left.g \in G L(n+1, R)\right|^{t} g \cdot Q \cdot g=Q, g\left(X_{Q}\right)=X_{Q}\right\}
$$

of $G L(n+1, \boldsymbol{R})$. Its action on $\boldsymbol{H}=\boldsymbol{H}^{n}$ is given by $g \cdot \xi=\eta$ for

$$
g=\left[\begin{array}{ccc}
\sigma & \gamma_{1} & \gamma_{2} \\
t \delta_{1} & \alpha_{1} & \alpha_{2} \\
t \delta_{2} & \alpha_{3} & \alpha_{4}
\end{array}\right] \in G^{(n)},
$$

$\sigma \in M(n-1, R), \gamma_{i}, \delta_{i} \in \boldsymbol{R}^{n-1}(i=1$ or 2$), \alpha_{i} \in \boldsymbol{R}(1 \leqq i \leqq 4),{ }^{t} \xi=\left({ }^{t} \xi^{\prime}, \xi_{n}\right), \xi^{\prime}$ $\in \boldsymbol{R}^{n-1}$ where η is defined by ${ }^{t} \eta=\left({ }^{t} \eta^{\prime}, \eta_{n}\right), \eta^{\prime} \in \boldsymbol{R}^{n-1}, \eta^{\prime}=\left({ }^{t} \delta_{2} \xi^{\prime}+\frac{1}{2}\left({ }^{t} \xi \xi\right) \alpha_{3}\right.$ $\left.+\alpha_{4}\right)^{-1}\left(\sigma \xi^{\prime}+\frac{1}{2}\left({ }^{t} \xi \xi\right) \gamma_{1}+\gamma_{2}\right)$ and $\eta_{n}=\left({ }_{0} \delta_{2} \xi^{\prime}+\frac{1}{2}\left({ }^{t} \xi \xi\right) \alpha_{3}+\alpha_{4}\right)^{-1} \xi_{n}$. We denote by $\Gamma^{(n)}$ the group $G^{(n)} \cap S L(n+1, Z)$. From now on we assume that $4 \leqq n \leqq 9$. We construct a fundamental domain F fit for $\Gamma^{(n)}$. We denote by Γ^{∞} the subgroup of $\Gamma=\Gamma^{(n)}$ fixing the point at infinity considered to be contained in $\partial \boldsymbol{H}$ and by Δ the set $\left\{\xi={ }^{t}\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{H} \mid \xi_{1}\right.$ $\left.+\xi_{2}<1, \xi_{1}>\xi_{3}, \xi_{2}>\xi_{3}, \xi_{3}>\xi_{4}>\ldots>\xi_{n-1}>0\right\}$. Then Δ is a fundamental domain for Γ^{∞}, namely $\bigcup_{g \in \Gamma^{\infty}} g \bar{\Delta}=\boldsymbol{H}$ and $g \Delta \cap \Delta=\phi$ for any $g \in \Gamma^{\infty}-\{e\}$ where e means the unit element of $G^{(n)}$. For each $g \in \Gamma-\Gamma^{\infty}$ we denote
by D_{g} the set $\left\{\xi \in \boldsymbol{H}\left|\left|\xi+\frac{1}{\alpha_{3}}\binom{\delta_{2}}{0}\right|>\sqrt{\frac{2}{\alpha_{3}}}\right\}\right.$. Note that $\alpha_{3} \geqq 1$ for $g \in \Gamma-\Gamma^{\infty}$ and $\alpha_{3}=0$ for $g \in \Gamma^{\infty}$. The boundary of D_{g} is totally geodesic. Now let F denote the set $\Delta \bigcap_{g \in \Gamma-\Gamma^{\infty}} D_{g}$. Then by standard arguments F is a fundamental domain for Γ. The assumption $n \leqq 9$ means that F is equal to $\Delta \cap D_{g_{1}}$, where $g_{1}=\left[\begin{array}{ccc}\rho & 0 & 0 \\ 0 & 1_{n-3} & 0 \\ 0 & 0 & \rho\end{array}\right], \rho$ being $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, so that $D_{g_{1}}=\{\xi \in \boldsymbol{H} \| \xi \mid>\sqrt{2}\}$. Thus F is an open n-dimensional simplex with totally geodesic faces and with one vertex (resp. two vertices) as cusp in case $n \leqq 8$ (resp. $n=9$). The fitness structure (\mathcal{P}, \mathcal{A}) of F is defined as follows: Let $p_{0}^{+}, p_{0}^{-}, p_{1}, \cdots, p_{n-1}$ and p_{n} be respectively the points ${ }^{t}(1,0, \cdots, 0,1),{ }^{t}(0,1,0, \cdots, 0,1), \infty,{ }^{t}(0,0, \cdots$, $0, \sqrt{2}),{ }^{t}(1 / 2,1 / 2,0, \cdots, 0, \sqrt{3 / 2}), 1 / 2^{t}(1,1,1, \cdots, 0, \sqrt{5}), \cdots, 1 / 2^{t}(1,1$, $\cdots, 1,0, \sqrt{9-(n-1))}$ and $1 / 2^{t}(1,1, \cdots, 1, \sqrt{9-n})$ of $\boldsymbol{H} \cup \partial H$. The $(n+1)$ points $p_{0}^{+}, p_{0}^{-}, p_{1}, p_{2}, p_{4}, \cdots, p_{n}$ are the vertices of F and p_{3} is the middle point of p_{0}^{+}and p_{0}^{-}. Let H_{i}^{+}(resp. $\left.H_{i}^{-}\right)(1 \leqq i \leqq n)$ be the open ($n-1$)-simplex with vertices p_{0}^{+}(resp. p_{0}^{-}), $p_{1}, \cdots, p_{i-1}, p_{i+1}, \cdots, p_{n}$. Clearly $\partial F=\bigcup_{i=1}^{n}\left(\bar{H}_{i}^{+} \cup \bar{H}_{i}^{-}\right)$. We denote by \mathscr{P} the collection of simplices $F, H_{i}^{+}, H_{i}^{-}(1 \leqq i \leqq n)$ and the lower dimensional face simplices of H_{i}^{+}or $H_{i}^{-}(1 \leqq i \leqq n)$. \mathscr{P} is a subdivision of \bar{F}. We can find the elements $g_{i} \in \Gamma^{\infty}(2 \leqq i \leqq n)$ such that $g_{i} H_{i}^{+}=H_{i}^{-}$. Notice that $g_{1} H_{1}^{+}=H_{1}^{-}$. Let \mathcal{A} be the subset $\left\{g_{1}, \cdots, g_{n}\right\}$ of Γ. Then

Proposition 1. The pair $(\mathscr{P}, \mathcal{A})$ is fit for F in the sense of [1]. \mathcal{A} is a set of generators of $\Gamma^{(n)}(4 \leqq n \leqq 9)$ whose fundamental relations are $g_{i}^{2}=e(1 \leqq i \leqq n, i \neq 3), g_{3}^{3}=e,\left(g_{i}^{-1} g_{j}\right)^{2}=e(1 \leqq i<i+2 \leqq j \leqq n),\left(g_{i}^{-1} g_{i+1}\right)^{3}$ $=e(1 \leqq i \leqq n-2)$ and $\left(g_{n-1}^{-1} g_{n}\right)^{4}=e$. In consequence $\Gamma /[\Gamma, \Gamma]=\boldsymbol{Z} / 2 \boldsymbol{Z}$ generated by g_{n}.

Remark. In case $n=2(r e s p . n=3), \Gamma /[\Gamma, \Gamma]=\boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / 4 \boldsymbol{Z}$ (resp. $\left.(Z / 2 Z)^{2}\right)$. The group $\Gamma^{(n)}(n \leqq 9)$ is a subgroup with index 2 of the group $G^{(n)} \cap G L(n+1, Z)$ which is generated by reflections. The latter group has been treated by Vinberg [2].
2°. We shall assume $n=3$. We define a polyhedron $F_{m, l}$ for each pair of integers $m \geqq 2, l \geqq 1$. By a sphere we shall mean an upper half sphere with centre in $\partial \boldsymbol{H}$. Let H_{0}^{+}be a sphere with centre c. Let $H_{1,0}^{+}, H_{1,0}^{-}, \cdots, H_{m, 0}^{+}, H_{m, 0}^{-}$be $2 m$-spheres of the same radius such that each $H_{i, 0}^{+}$or $H_{i, 0}^{-}(1 \leqq i \leqq m)$ crosses normally H_{0}^{+}and that each $H_{i, 0}^{-}$(resp. $H_{i, 0}^{+}$) is tangent to $H_{i, 0}^{+}\left(\right.$resp. $\left.H_{i-1,0}^{-}\right)(1 \leqq i \leqq m)$ at a point of the circle ∂H_{0}^{+}, where $H_{0,0}^{-}$means $H_{\bar{m}, 0}^{-}$. Assume that they are arranged counter-clockwise around H_{0}^{+}in the above order. Let $K_{1,1}^{+}, L_{1,1}^{+}, K_{2,1}^{+}, L_{2,1}^{+}, \cdots, K_{m, 1}^{+}, L_{m, 1}^{+}$ be $2 m$ spheres of the same radius and with centres outside H_{0}^{+}such that

each $K_{i, 1}^{+}$(resp. $L_{i, 1}^{+}$) crosses normally both $H_{i-1,0}^{-}$and $H_{i, 0}^{+}$(resp. both $H_{i, 0}^{+}$and $H_{i, 0}^{-}$) and is tangent to the three spheres $H_{0}^{+}, L_{i-1,1}^{+}, L_{i, 1}^{+}$(resp. $H_{0}^{+}, K_{i, 1}^{+}, K_{i+1,1}^{+}$) (see the figure). They are uniquely determined and turn counterclockwise around H_{0}^{+}. Let V_{1} (resp. W_{1}) be the sphere with centre c such that each $H_{i, 0}^{*}\left(1 \leqq i \leqq m, \varepsilon= \pm\right.$) (resp. each $K_{i, 1}^{+}, L_{i, 1}^{+}$ ($1 \leqq i \leqq m$) is tangent to V_{1} (resp. W_{1}) from the inside of V_{1} (resp. W_{1}). Let $H_{i, 1}^{i}(1 \leqq i \leqq m, \varepsilon= \pm)$ be the reflection of $H_{i, 0}^{c}$ with respect to V_{1}. Let $K_{i, 1}^{-}\left(\right.$resp. $\left.L_{i, 1}^{-}\right)(1 \leqq i \leqq m)$ be the reflection of $K_{i, 1}^{+}\left(r e s p . L_{i, 1}^{+}\right)$with respect to W_{1}. Inductively we define $V_{j}\left(\right.$ resp. $\left.W_{j}\right)(2 \leqq j \leqq 2 l)$ to be the reflection of $V_{j-1}\left(\right.$ resp. W_{j-1}) with respect to W_{j-1} (resp. V_{j}), $H_{i, j}^{i}$ ($1 \leqq i \leqq m, \varepsilon= \pm, 2 \leqq j \leqq 2 l$) be the reflection of $H_{i, j-1}^{\bullet}$ with respect to V_{j}, $K_{i, j}^{+}$(resp. $L_{i, j}^{+}$) $(1 \leqq i \leqq m, 2 \leqq j \leqq l)$ be the reflection of $K_{i, j-1}^{-}$(resp. $\left.L_{i, j-1}^{-}\right)$with respect to $W_{2 j-2}$ and $K_{i, j}^{-}\left(\right.$resp. $\left.L_{i, j}^{-}\right)(1 \leqq i \leqq m, 2 \leqq j \leqq l)$ be the reflection of $K_{i, j}^{+}\left(\right.$resp. $L_{i, j}^{+}$) with respect to $W_{2 j-1}$. Let H_{0}^{-}be the sphere $W_{2 l}$. We denote by $F_{m, l}=F$ the polyhedron
with $2(4 m l+m+1)$ - faces, where D_{H} (resp. D_{H}^{*}) means the half space over (resp. under) the half sphere H. We denote by \mathscr{P} the naturally defined subdivision of $\bar{F}_{m, l}$. We denote each 2 -dimensional face of F corresponding to the sphere $H_{i, j}^{*}$, etc. by the same letter. Let $\alpha_{i, j}(1 \leqq i \leqq m, 0 \leqq j \leqq 2 l)$ be the element of G such that $\alpha_{i, j} H_{i, j}^{+}=H_{i, j}^{-}$, $\alpha_{i, j} F \cap F=\phi$ and $\alpha_{i, j}$ fixes the tangent point of $H_{i, j}^{+}$and $H_{i, j}^{-} . \quad \beta_{i, j}$ (resp. $\left.\gamma_{i, j}\right)(1 \leqq i \leqq m, 1 \leqq j \leqq l)$ be the element of G such that $\beta_{i, j} K_{i, j}^{+}=K_{i, j}^{-}$(resp. $\gamma_{i, j} L_{i, j}^{+}=L_{i, j}^{-}$), $\beta_{i, j} F \cap F=\phi$ (resp. $\gamma_{i, j} F \cap F=\phi$) and $\beta_{i, j}$ (resp. $\gamma_{i, j}$) fixes the tangent point of $K_{i, j}^{+}$and $K_{i, j}^{-}$(resp. $L_{i, j}^{+}$and $L_{i, j}^{-}$). Let γ be the element of G such that $\gamma H_{0}^{+}=H_{0}^{-}, \gamma F \cap F=\phi$ and γ stabilizes any line through \boldsymbol{c} in $\partial \boldsymbol{H}$.

Proposition 2. Let \mathcal{A} be the collection of all the $\alpha_{i, j}, \beta_{i, j}, \gamma_{i, j}, \gamma$ above. Then $(\mathcal{P}, \mathcal{A})$ is fit for $F_{m, l}$. The group $\Gamma_{m, l}$ generated by \mathcal{A} has the fundamental relations $\gamma^{-1} \alpha_{i, 0}^{-1} \gamma \alpha_{i, 2 l}=e, \beta_{i, j} \alpha_{i, 2 j-2}^{-1} \beta_{i+1, j}^{-1} \alpha_{i, 2 j}=e$, $\beta_{i, j} \alpha_{i, 2 j-1}^{-1} \beta_{i+1, j}^{-1} \alpha_{i, 2 j-1}=e, \gamma_{i, j} \alpha_{i, 2 j-2}^{-1} \gamma_{i, j}^{-1} \alpha_{i, 2 j}=e$ and $\gamma_{i, j} \alpha_{i, 2 j-1}^{-1} \gamma_{i, j}^{-1} \alpha_{i, 2 j-1}=e$ ($\leqq i \leqq m, 1 \leqq j \leqq l)$. In consequence $\Gamma_{m l} /\left[\Gamma_{m l}, \Gamma_{m, l}\right]=\boldsymbol{Z}^{2 m l+m+l+1}$.

Remark. $\Gamma_{m, l}$ is torsion free and the Betti numbers of $\boldsymbol{H} / \Gamma_{m, l}$ are $b_{0}=1, b_{1}=b_{2}=2 m l+m+l+1$ and $b_{3}=0$. The volume of $\boldsymbol{H} / \Gamma_{m, l}$ equals to $8 m l\left(2 \varepsilon_{0}-\frac{1}{2} \int_{0}^{\pi / 2 m} \log \frac{1+\sin x}{1-\sin x} d x\right)$ where $\varepsilon_{0}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n+1)^{2}}$.

References

[1] T. Morokuma: On discontinuous groups acting on a real hyperbolic space. I. Proc. Japan Acad., 52 (7), 359-362 (1976).
[2] E. B. Vinberg: Discrete Groups Generated by Reflections in Lobacevskii Spaces. Math. USSR-Sbornik, Vol. 1, No. 3 (1967).

