3. Abelian Groups and N.Semigroups. II

By Thomas Nordahl
California State College, Stanislaus, Turlock, Calif., U. S. A.
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1977)

1. Introduction. This note takes its name from the paper [4] by Takayuki Tamura. In that paper Tamura shows the following result:

Theorem 1.1. Let K be an Abelian group and A be the group of integers under addition. If G is an Abelian extension of A by K with respect to factor system $f: K \times K \rightarrow A$, then there exists a factor system g such that
(i) $g(\alpha, \beta) \geq 0$ for all α, β in K
(ii) g is equivalent to f.

There needs to be a slight change in the proof. Define a new function δ^{\prime} by $\delta^{\prime}(\varepsilon)=0$ and $\delta^{\prime}(\alpha)=\delta(\alpha)$ if $\alpha \neq \varepsilon$. Let $g(\alpha, \beta)=f(\alpha, \beta)+\delta^{\prime}(\alpha)+\delta^{\prime}(\beta)$ $-\delta^{\prime}(\alpha \beta)$.

In his paper Tamura asks if A in Theorem 1.1 can be replaced by an ordered Abelian group. We shall show that A can be replaced by any subgroup of the additive reals. Alternatively we shall show that A can be an Archimedean ordered Abelian group, as an Archimedean ordered Abelian group is isomorphic to a real semigroup.
2. Preliminary results. Let A be a subgroup of the reals under addition. Let G be an Abelian group containing A. Let S be an N subsemigroup (see [4]) of G which contains $A^{+}=\{x \in A: x>0\}$ such that G is the quotient group of S. We call A^{+}positive cone of A. Let G $=\bigcup_{\xi \in G / A} A_{\xi}$ be the decomposition of G into cosets modulo A. Let $x \in A_{\xi}$, some arbitrary coset of G, then $x=b c^{-1}$ for some $b, c \in S$. Let $a \in A^{+}$ $\subset S$. As S is Archimedean there exists positive integer m and some $d \in S$ such that $c d=a^{m}$. Thus $x c=b$ implies $x a^{m}=x c d=b d \in S$. Note that as $x \in A_{\xi}$ and as $a^{m} \in A$ we have $x a^{m} \in A_{\xi}$ and so $S \cap A_{\xi} \neq \emptyset$.

Proposition 2.1. Let A be a subgroup of the reals under addition and G be an Abelian group containing A. Let S be an N-subsemigroup of G which contains A^{+}. The following are equivalent:
(i) G is the quotient group of S.
(ii) $G=A S$.
(iii) S intersects each congruence class of G modulo A.

Proof. We have shown that (i) implies (iii). For any commutative cancellative semigroup T, we let $Q(T)$ denote the quotient group of T. If $G=A S$ then as $A^{+} \subset S$ we have $A=Q\left(A^{+}\right) \subset Q(S)$ and so $G=A S$
$\subset Q(S)$. It follows that (ii) implies (i). Suppose S intersects each congruence class of G modulo A. Let A_{ξ} be an arbitrary congruence class of G modulo A and let $x \in S \cap A_{\xi}$. Note that $A_{\xi}=A x \subset A S$. This is true for each $\xi \in G / A$ and so $G=A S$. We thus have (iii) implies (ii).

For any Abelian group T we shall let $D(T)$ denote the divisible hull of T.

Proposition 2.2. Let G be an Abelian group which contains A, a subgroup of the additive reals. There exists an N-subsemigroup S of G containing A^{+}such that G is the quotient group of S.

Proof. As the additive group of reals is divisible we have that $D(A)$ is a subgroup of the reals. It is well known from group theory [2] that a divisible subgroup of a group is a direct summand and so $D(G)=D(A) \oplus L$ for some Abelian group L. Let $S^{*}=D(A)^{+} \oplus L . \quad S^{*}$ is an N-semigroup which contains A^{+}. Let $S=S^{*} \cap G$. S contains A^{+} as $A^{+} \subset S^{*}$ and $A^{+} \subset G$. Let $\pi: D(G) \rightarrow D(A)$ be the projection homomorphism. Let $a \in A^{+} \subset D(G)$, then $\pi(a)>0$. Let $x \in G$. There exists a positive integer n such that $n \pi(a)+\pi(x)>0$ and so $\pi(n a+x)>0$. Hence $n a+x \in G \cap\left(D(A)^{+} \oplus L\right)$ implying that $n a+x \in S$. Hence $G \subset A$ $+S$ and so $G=A+S$. By Proposition $2.1 G$ is the quotient group of S. Let $x, y \in S$. As S^{*} is Archimedean we have $m x=y+z$ for some $z \in S^{*}$ and some positive integer m. As $x, y \in G$ we have $z \in G$. As $z \in S^{*} \cap G=S, S$ is Archimedean. S is thus an N-subsemigroup of G, containing A^{+}, whose quotient group is G.

Remark 2.3. In Proposition 2.2, any N-subsemigroup S of G containing A^{+}satisfies $S \cap A=A^{+}$.

Proof. This follows as S is idempotent free.
3. Applications to Abelian group theory.

Theorem 3.1. Let K be an Abelian group and A be a subgroup of the reals under addition. If G is an Abelian extension of A by K with respect to a factor system $f: K \times K \rightarrow A$, then there exists a factor system g such that
(i) $g(\alpha, \beta) \geq 0$ for all $\alpha, \beta \in K$ and
(ii) g is equivalent to f.

Proof. By the assumption, let $G=\{(m, \alpha): \alpha \in K, m \in A\}$ in which $(m, \alpha)(n, \beta)=(m+n+f(\alpha, \beta), \alpha \beta)$. Let e be the identity of K. We identify A^{+}and $\left\{(x, e): x \in A^{+}\right\}$. By Proposition 2.2 there is an N semigroup S containing A^{+}such that G is the quotient group of S. By Remark 2.3 $S \cap A=A^{+}$. Let $\xi \in K$. Suppose there exists a collection $\left\{\left(x_{n}, \xi\right)\right\}_{n-1}^{\infty}$ of elements of S such that $x_{n} \rightarrow-\infty$. Let $\left(y, \xi^{-1}\right) \in S$. Note that such an element exists as S intersects each congruence class of G modulo A. For each positive integer $n,\left(x_{n}, \xi\right)\left(y, \xi^{-1}\right)=\left(x_{n}+y+f\left(\xi, \xi^{-1}\right), e\right)$ $\in S \cap A=A^{+}$. This is a contradiction as $x_{n}+y+f\left(\xi, \xi^{-1}\right) \rightarrow-\infty$. For
each $\alpha \in K$ we can thus define $\sigma(\alpha)=\inf \{x:(x, \alpha) \in S\}$. Note that $\sigma(e)$ $\neq 0$ if and only if A is isomorphic to the group of integers. This case has been treated by Tamura. Thus we may assume that A is not isomorphic to the group of integers and so $\sigma(e)=0$. Let $\left\{\left(x_{n}, \alpha\right)\right\},\left\{\left(y_{n}, \beta\right)\right\}$ be subsets of S such that $x_{n} \rightarrow \sigma(\alpha)$ and $y_{n} \rightarrow \sigma(\beta)$. Then for each positive integer $n,\left(x_{n}+y_{n}+f(\alpha, \beta), \alpha \beta\right) \in S$. It follows that for each positive integer n we have $x_{n}+y_{n}+f(\alpha, \beta) \geq \sigma(\alpha \beta)$ and so $\sigma(\alpha)+\sigma(\beta)+f(\alpha, \beta)$ $\geq \sigma(\alpha \beta)$. Let $g(\alpha, \beta)=f(\alpha, \beta)+\sigma(\alpha)+\sigma(\beta)-\sigma(\alpha \beta)$ for every $\alpha, \beta \in K$. We see that g is a factor system which is equivalent to f and $g(\alpha, \beta) \geq 0$ for all $\alpha, \beta \in K$.

References

[1] Clifford, A. H., and G. B. Preston: The Algebraic Theory of Semigroups, Vol. 1. Amer. Math. Soc. Providence, Rhode Island (1961).
[2] Kaplansky, I.: Infinite Abelian Groups. The University of Michigan Press, Ann Arbor (1968).
[3] Tamura, T.: Commutative nonpotent Archimedean semigroups with Cancellation law. Jour. Gakugei, Tokushima Univ., 8, 5-11 (1957).
[4] ——: Abelian groups and N-semigroups. Proc. Japan Acad., 46, 212-216 (1970).

