2. A Remark on Fractional Powers of Linear Operators in Banach Spaces

By Michiaki Watanabe
Faculty of General Education, Niigata University (Communicated by Kôsaku Yosida, m. J. A., Jan. 12, 1977)

1. Introduction. Let X be a Banach space and A be a densely defined, closed linear operator in X satisfying
(1) the resolvent set $\rho(-A)$ of $-A$ contains the non-negative real axis and

$$
\begin{equation*}
\left\|\lambda(\lambda+A)^{-1}\right\| \leqq M \quad \text { for } \lambda>0 \tag{2}
\end{equation*}
$$

or equivalently,
(2)

$$
\left\|\lambda(\lambda+A)^{-1}\right\| \leqq M_{1} \quad \text { for } \mid \arg \lambda \lambda \leqq \omega
$$

holds, where M, M_{1} and ω are some positive constants independent of 2. As is well known, the fractional power $A^{\alpha}, 0<\alpha<1$ of A is defined through

$$
\begin{equation*}
A^{-\alpha}=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{-\alpha}(\lambda-A)^{-1} d \lambda, \tag{3}
\end{equation*}
$$

where Γ runs in $\rho(A)$ from $\infty e^{-i \theta}$ to $\infty e^{i \theta}(\pi-\omega \leqq \theta \leqq \pi)$ avoiding the non-positive real axis.

The purpose of the present paper is to describe a criterion for the width of the domain $D\left(A^{\alpha}\right)$ of A^{α}, and then apply it to an evolution equation of parabolic type:

$$
d u(t) / d t+A(t) u(t)=f(t), \quad 0 \leqq t \leqq T
$$

2. Basic theorem. We denote by $D\left(A_{\alpha}\right), 0<\alpha<1$ the set of all $x \in X$ such that $\int_{\Gamma} \lambda^{\alpha-1} A(\lambda-A)^{-1} x d \lambda$ is absolutely convergent and define a linear operator A_{α} by

$$
\begin{equation*}
A_{\alpha} x=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{\alpha-1} A(\lambda-A)^{-1} x d \lambda, \quad x \in D\left(A_{\alpha}\right) \tag{4}
\end{equation*}
$$

In view of (3) it is evident that $D(A)$ is contained in $D\left(A_{\alpha}\right), 0<\alpha<1$.
Lemma. If $x \in X$ and
(5) $\lambda^{\beta} A(\lambda+A)^{-1} x,|\arg \lambda| \leqq \omega$ is uniformly bounded for some $0<\beta \leqq 1$, then $x \in D\left(A^{\alpha}\right)$ and $A^{\alpha} x=A_{\alpha} x$ for any α with $0<\alpha<\beta$.

Proof. Clearly $x \in D\left(A_{\alpha}\right), 0<\alpha<\beta$ and (4) holds good. From

$$
\begin{aligned}
A^{-1} A^{-\alpha} A_{\alpha} x & =A^{-\alpha} A^{-1} A_{\alpha} x=A^{-\alpha} \frac{1}{2 \pi i} \int_{\Gamma} \lambda^{\alpha-1}(\lambda-A)^{-1} x d \lambda \\
& =A^{-\alpha} A^{\alpha-1} x=A^{-1} x,
\end{aligned}
$$

it follows that $A^{-\alpha} A_{\alpha} x=x$, which implies that $x \in D\left(A^{\alpha}\right)$ and $A^{\alpha} x=A_{\alpha} x$.
Theorem. Let A be a densely defined, closed linear operator satis-
fying (1) and (2). In order that an $x \in X$ belong to $D\left(A^{\alpha}\right)$ and

$$
A^{\alpha} x=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{\alpha-1} A(\lambda-A)^{-1} x d \lambda
$$

hold for some $0<\alpha<1$, it is necessary and sufficient that (5) $\lambda^{\beta} A(\lambda+A)^{-1} x, \lambda>0$ is uniformly bounded for some β with $0<\beta \leqq 1$.

Proof. The necessity. A simple calculation shows that $\left\|\lambda^{\alpha} A^{-\alpha} A(\lambda+A)^{-1}\right\|, \lambda>0$ is bounded. Hence if $x \in D\left(A^{\alpha}\right), 0<\alpha<1$, then (5) holds with $\beta=\alpha$.

The sufficiency. If an $x \in X$ satisfies (5) with $0<\beta \leqq 1$, it also satisfies (5) ${ }_{1}$ with some small $\omega>0$. Therefore by Lemma we conclude that $x \in D\left(A^{\alpha}\right)$ and $A^{\alpha} x=A_{\alpha} x$ for $0<\alpha<\beta$.
Q.E.D.

Remark. In the above we have proved that

$$
D\left(A_{\beta}\right) \subset D\left(A^{\beta}\right) \subset B_{\beta} \subset D\left(A_{\alpha}\right) \subset D\left(A^{\alpha}\right) \subset B_{\alpha}
$$

as long as $0<\alpha<\beta<1$, where $B_{\beta}, 0<\beta \leqq 1$ is the set of $x \in X$ which satisfy (5) or equivalently (5) for some small $\omega>0$.
3. Application. In this section we consider a system $A(t), t \in$ [$0, T]$ of densely defined closed linear operators satisfying (1) and (2) (or (2) $)_{1}$) with M (M_{1} and ω) independent of t. We assume that $A(t)^{-1}$ is strongly continuously differentiable in $t \in[0, T]$.

Proposition. Under the above assumptions the followings are equivalent:
(6) the range $R\left(\frac{d}{d t} A(t)^{-1}\right)$ of $\frac{d}{d t} A(t)^{-1}$ is included with $D\left(A(t)^{\rho}\right)$ and

$$
\left\|A(t)^{\rho} \frac{d}{d t} A(t)^{-1}\right\|, t \in[0, T] \text { is bounded for some } 0<\rho<1
$$

$$
\begin{equation*}
\left\|\lambda^{\rho_{1}} A(t)(\lambda+A(t))^{-1} \frac{d}{d t} A(t)^{-1}\right\|, t \in[0, T],|\arg \lambda| \leqq \omega \text { is bounded for } \tag{7}
\end{equation*}
$$ some $0<\rho_{1} \leqq 1$.

Remark. H. Tanabe [2] constructed the solution to the evolution equation
(8)

$$
d u(t) / d t+A(t) u(t)=f(t), \quad 0 \leqq t \leqq T
$$

by assuming $\omega>\pi / 2$ (parabolicity) and (6). Recently A. Yagi [3] constructed the solution of (8) under the assumption (7) instead of (6). But his method, which makes no explicit use of the fractional power of $A(t)$, is new and seriously interesting for the author.

Proof of Proposition. The implication (6) $\rightarrow(7)$ is clear. For the proof of $(7) \rightarrow(6)$ we apply the lemma stated above to know that $\frac{d}{d t} A(t)^{-1} x, x \in X$ belongs to $D\left(A(t)^{\rho}\right)$ for any $0<\rho<\rho_{1}$ and that the integral

$$
A(t)^{\rho} \frac{d}{d t} A(t)^{-1} x=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{\rho-1} A(t)(\lambda-A(t))^{-1} x d \lambda
$$

is absolutely convergent uniformly in $t \in[0, T]$.
4. Example. Finally we deal with an example of $A(t), t \in[0, T]$. Let $A(t)$ be for each $t \in[0, T]$ the associated operator with a regular elliptic boundary value problem $\left(A(t, x ; D),\left\{B_{j}(t, x ; D)\right\}_{j=1}^{m}, G\right)$ of order $2 m$ in R^{n}, where

$$
\begin{aligned}
& G \subset R^{n}, \quad D=\left(\partial / \partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial x_{n}\right)^{\alpha_{n}}, \\
& A(t, x ; D)=\sum_{|\alpha| \leq 2 m} a_{\alpha}(t, x) D^{\alpha}, \quad B_{j}(t, x ; D)=\sum_{|\beta| \leq m_{j}} b_{j \beta}(t, x) D^{\beta}, \\
& \quad 0 \leqq m_{j} \leqq 2 m-1, \quad j=1, \cdots, m .
\end{aligned}
$$

For the details we refer the reader to S . Agmon [1]. $A(t)$ is defined as usual by $(A(t) u)(x)=A(t, x ; D) u(x)$ for any $u \in D(A(t))$, the set of all $u \in W_{p}^{2 m}(G)$ such that $B_{j}(t, x ; D) u(x)=0, x \in \partial G, j=1, \cdots, m$. We suppose on $\left(A(t, x ; D),\left\{B_{j}(t, x ; D)\right\}_{j=1}^{m}, G\right)$ Agmon's condition for $\theta \notin\left(-\theta_{0}, \theta_{0}\right)$, which furnishes $A(t)$ with the following property: $\rho(-A(t))$ includes a sector $|\arg \lambda| \leqq \pi-\theta_{0},|\lambda| \geqq C$, where

$$
\begin{align*}
& \|u\|_{2 m, p}+|\lambda|\|u\|_{p} \\
& \leqq \begin{array}{l}
\leqq\left\{(\lambda+A(t, \cdot ; D)) u\left\|_{p}+\sum_{j=1}^{m}|\lambda|^{1-m_{j} / 2 m}\right\| g_{j}\left\|_{p}+\sum_{j=1}^{m}\right\| g_{j} \|_{2 m-m_{j}, p}\right\}, \\
\quad g_{j}(x)=B_{j}(t, x ; D) u(x), \quad x \in \partial G, j=1, \cdots, m
\end{array} \tag{9}
\end{align*}
$$

holds for any $u \in W_{p}^{2 m}(G)$.
We will prove here with the aid of the above proposition that $A(t), t \in[0, T]$ satisfies (6) if (10) $\quad a_{\alpha}(t, x),|\alpha| \leqq 2 m ; D^{r} b_{j \beta}(t, x),|\beta| \leqq m_{j},|\gamma| \leqq 2 m-m_{j}, j=1, \cdots, m$ are continuously differentiable in t in $[0, T] \times \bar{G}$.

It is not difficult to verify that the strong continuous differentiability of $A(t)^{-1}$ in $t \in[0, T]$ follows from (10). We replace $A(t)+k I$ by $A(t)$ for a suitable number k if necessary. Putting

$$
u(t)=A(t)^{-1} g, \quad v_{\lambda}(t)=\lambda(\lambda+A(t))^{-1} d u(t) / d t
$$

for any $g \in L_{p}(G)$, we have

$$
\begin{aligned}
& (\lambda+A(t, x ; D))\left(\frac{\partial}{\partial t} u(t, x)-v_{\lambda}(t, x)\right)=-\sum_{|\alpha| \leq 2 m}\left(\frac{\partial}{\partial t} a_{\alpha}(t, x)\right) D^{\alpha} u(t, x) \\
& B_{j}(t, x ; D)\left(\frac{\partial}{\partial t} u(t, x)-v_{\lambda}(t, x)\right)=\sum_{|\beta| \leq m_{j}}\left(\frac{\partial}{\partial t} b_{j \beta}(t, x)\right) D^{\beta} u(t, x), \\
& x \in G, \\
& x \in \partial=1, \cdots, m .
\end{aligned}
$$

Making use of (9) we have

$$
\begin{aligned}
& \left\|\lambda A(t)(\lambda+A(t))^{-1} \frac{d}{d t} A(t)^{-1} g\right\|_{p}=|\lambda|\left\|\frac{d}{d t} u(t)-v_{\lambda}(t)\right\|_{p} \\
& \quad \leqq C\left(1+\sum_{j=1}^{m}|\lambda|^{1-m_{j} / 2 m}\right)\|u(t)\|_{2 m, p} \leqq C\left(1+\sum_{j=1}^{m}|\lambda|^{1-m_{j} / 2 m}\right)\|g\|_{p}
\end{aligned}
$$

for any $t \in[0, T]$ and λ with $|\arg \lambda| \leqq \pi-\theta_{0},|\lambda| \geqq C$, where, as in (9), we use C to denote a positive constant independent of t and λ. But $B_{j}(t, x ; D)$ is, if $m_{j}=0$, considered to be the identity operator and hence
we obtain

$$
\begin{equation*}
\left\|A(t)(\lambda+A(t))^{-1} \frac{d}{d t} A(t)^{-1}\right\|_{L_{p}(G) \rightarrow L_{p}(G)} \tag{11}
\end{equation*}
$$

$$
\leqq C\left(|\lambda|^{-1}+\sum_{m_{j} \neq 0}|\lambda|^{-m_{j} / 2 m}\right) .
$$

Clearly (11) implies (7) with $\omega=\pi-\theta_{0}$ and

$$
\rho_{1}=\left\{\begin{array}{cl}
\operatorname{Min}_{m_{j} \neq 0}\left(m_{j} / 2 m\right) & \left(\left(m_{1}, \cdots, m_{m}\right) \neq(0, \cdots, 0)\right), \\
1 & \left(\left(m_{1}, \cdots, m_{m}\right)=(0, \cdots, 0)\right) .
\end{array}\right.
$$

Thanks to the above proposition, we have proved that (6) is valid for our $A(t), t \in[0, T]$ with any positive $\rho<\rho_{1} ; \rho=1 / 2 m p, p>1$ for example.

References

[1] S. Agmon: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 119-147 (1962).
[2] H. Tanabe: Note on singular perturbation for abstract differential equations. Osaka J. Math., 1, 239-252 (1964).
[3] A. Yagi: On the abstract linear evolution equations in Banach spaces. J. Math. Soc. Japan, 28, 290-303 (1976).

