1. On Cauchy Problem for a System of Linear Partial Differential Equations with Constant Coefficients

By Hitoshi Furuya and Mitio Nagumo
Sophia University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 13, 1976)

1. Introduction. We shall consider the Cauchy problem for a system of partial differential equations for a system of unknown functions $u_{\mu}=u_{u}(t, x)(\mu=1, \cdots, k)$ of two independent real variables t and x :

$$
\partial_{t} u_{\mu}=\sum_{\nu=1}^{k} P_{\mu \nu}\left(\partial_{x}\right) u_{\nu} \quad(\mu=1, \cdots, k),
$$

where $P_{\mu \nu}(\zeta)$ are polynomials in ζ with constant complex coefficients. Using vector-matrix notations we can write for the above system of equations as
(1)

$$
\partial_{t} u^{\downarrow}=\boldsymbol{P}\left(\partial_{x}\right) u^{\downarrow},
$$

where $u^{\downarrow}=\left(u_{\mu}, \mu \downarrow 1, \cdots, k\right)$ and $\boldsymbol{P}(\zeta)=\left(P_{\mu \nu}(\zeta)_{\nu 11, \cdots, k}^{\mu+1}\right)$.
Let \mathscr{F} be a linear space of (generalized) complex vector valued functions on R^{1} such that $\mathcal{S}^{k} \subset \mathscr{F} \subset \mathcal{S}^{\prime k}{ }^{1)}$ where the topology of the space on the left side of \subset is finer than that of the space on the right side of \subset.

The Cauchy problem for the equation (1) is said to be forward \mathcal{F} well posed on the interval $[0, \tau](\tau>0)$, if and only if the following two conditions are satisfied.

1) (Unique existence of the solution) For any $u_{0}^{1} \in \mathscr{F}$ there exists a unique \mathscr{F}-valued solution $u^{\downarrow}=u^{\perp}(t, x)$ of (1) for $t \in[0, \tau]$ with the initial condition $u^{\perp}(0, x)=u_{0}^{1}(x)$.
2) (Continuity of solution with respect to the initial value) If the initial value u_{0}^{\perp} tends to zero in \mathscr{F}, then the solution $u^{\downarrow}=u^{\perp}(t, x)$ of (1) with the initial value $u^{\downarrow}(0, x)=u_{0}^{\mathfrak{l}}(x)$ also tends to zero in \mathscr{F} uniformly for $t \in[0, \tau]$.

Since the operator $P\left(\partial_{x}\right)$ does not depend on the time variable t, we can easily see that the forward \mathscr{F}-well posedness does not depend on $\tau>0$, hence we can simply use the forward \mathscr{F}-well posedness without mentioning the interval $[0, \tau]$.

Making use of the Fourier transform with respect to the space variable x

$$
v^{\perp}(\xi)=(2 \pi)^{-1 / 2} \int_{-\infty}^{\infty} e^{-i \xi x} u^{\perp}(x) d x
$$

[^0]the Cauchy problem of the equation (1) can be formally reduced to that of the ordinary differential equation for the $\hat{\mathscr{F}}$-valued unknown function $v^{\mathfrak{l}}=v^{\mathfrak{l}}(t, \xi)$
(2)
$$
\partial_{t} v^{\downarrow}=P(i \xi) v^{\downarrow},
$$
where $\hat{\mathscr{F}}$ is the Fourier transform of \mathscr{F}.
It is well known that for some function spaces, for example for \mathscr{F} $=\mathcal{S}^{k}$ or $\left(\mathscr{D}_{L^{2}}\right)^{k}$, the necessary and sufficient condition for the forward \mathscr{F}-well posedness of (1) is given by the Petrovski correctness: "The real parts of all eigen-values of the matrix $\boldsymbol{P}(i \xi)$ are bounded above for $\xi \in \boldsymbol{R}^{1}$." ${ }^{2)}$

In this note we shall show that the Petrovski correctness is necessary for the \mathscr{F}-well posedness of (1) provided that $\mathcal{S}^{k} \subset \mathscr{\mathscr { F }} \subset \mathcal{S}^{\prime k}$.
2. The necessity of the Petrovski correctness. In the case \mathcal{S}^{k} $\subset \mathscr{F} \subset \mathcal{S}^{\prime k}$, the necessity of the Petrovski correctness for the forward F-well posedness comes from the following proposition.

Proposition. If $\boldsymbol{P}(i \xi)$ does not satisfy the Petrovski correctness, then, for the solution $v^{\downarrow}=v^{\downarrow}(t, \xi)$ of the equation (2), we can construct a sequence of initial values $v_{n}^{l}(\xi) \subset C_{0}^{\infty}\left(\boldsymbol{R}^{1}\right)^{3)}$ such that $v_{n}^{\downarrow} \rightarrow 0$ in \mathcal{S}^{k} as n $\rightarrow \infty$, but, at $t=\tau>0, v_{n}^{\downarrow}(\tau, \xi) \nrightarrow 0$ in $\mathcal{S}^{\prime k}$ as $n \rightarrow \infty$.

To prove this proposition, let $\lambda=\tilde{\lambda}(\xi)$ be eigen-value of $\boldsymbol{P}(i \xi)$ such that

$$
\mathcal{R}_{e} \tilde{\lambda}(\xi)=\operatorname{Max}\left\{\mathcal{R e}_{e} \lambda_{j}(\xi) ; j=1, \cdots, k\right\} .
$$

And we use following lemmas, of which we shall omit the proof.
Lemma 1. There exist $l \in N$ and $h \in Z^{4)}$ and a normalized ${ }^{5)}$ eigenvector $v_{0}^{\dagger}(\xi)$ of $\boldsymbol{P}(i \xi)$ corresponding to the eigen-value $\tilde{\lambda}(\xi)$ such that, for $\xi \geqq R$ with a sufficiently large $R>0$,

$$
\tilde{\lambda}(\xi)=\xi^{h / l} f\left(\xi^{-1 / l}\right), \quad v_{\nu}(\xi)=f_{\nu}\left(\xi^{-1 / l}\right),
$$

$\left(v_{0}^{1}(\xi)\right)=\left(v_{1}(\xi), \cdots, v_{k}(\xi)\right)$, where $f(\zeta)$ and $f_{\nu}(\zeta)$ are regular analytic for $|\zeta| \leqq R^{-1}$ and $f(0) \neq 0$.

Lemma 2. Let $\varepsilon>0$ and $\rho \in C_{0}^{\infty}\left(\boldsymbol{R}^{1}\right)$ be such that

$$
\operatorname{supp}(\rho) \subset[-1,1], \quad \rho(\xi) \geqq 0, \quad \int_{-1}^{1} \rho(\xi) d \xi=1
$$

and let

$$
v_{(\alpha)}^{\dagger}(\xi)=\exp \left(-2^{-1}\left(1+\xi^{2}\right)^{\varepsilon}\right) \rho(\xi-\alpha) v_{0}^{1}(\xi),
$$

where $v_{0}^{\prime}(\xi)$ is the eigen-vector of $\boldsymbol{P}(i \xi)$ given in Lemma 1.
Then, there exists $R_{1}>R>0$ such that $v_{(\alpha)}^{\dagger} \subset \mathcal{S}^{k}$ for $\alpha \geqq R_{1}$ and $v_{(\alpha)}^{\dagger}$ $\rightarrow 0$ in \mathcal{S}^{k} as $\alpha \rightarrow+\infty$.

Lemma 3. Let $\tilde{\lambda}(\xi)$ and $v_{0}^{\dagger}(\xi)$ be the same as above, and $\psi(\xi) \geqq 0$
2) Cf. [1] and [2] of the references.
3) By $C_{0}^{\infty}\left(\boldsymbol{R}^{1}\right)$ we denote the set of all complex valued C^{∞} functions on \boldsymbol{R}^{1} with compact support.
4) $N=$ the set of all natural numbers. $Z=$ the set of all rational integers.
5) $\left|v^{4}\right|=\left(\sum_{v=1}^{k}\left|v_{\nu}\right|^{2}\right)^{1 / 2}=1$, if $v^{2}=\left(v_{1}, \cdots, v_{k}\right)$.
be a C^{∞} function such that $\psi(\xi)=0$ for $\xi \leqq R_{1}$ and $\psi(\xi)=1$ for $\xi \geqq R_{1}+1$. Then, for any $\varepsilon>0$ and $\tau>0$,

$$
\phi^{\prime}(\xi)=\psi(\xi) \exp \left(-2^{-1}\left(1+\xi^{2}\right)^{\varepsilon}-i \tau \mathcal{J}_{m} \tilde{\lambda}(\xi)\right) \bar{v}_{0}^{1}(\xi)^{\beta)} \in \mathcal{S}^{k} .
$$

Proof of Proposition. Let $v_{(\alpha)}^{\dagger}(\xi)$ be the vector given in Lemma 2, which is also an eigen-vector of $\boldsymbol{P}(i \xi)$ corresponding to the eigen-value $\tilde{\lambda}(\xi)$, and put

$$
v_{(\alpha)}^{\perp}(t, \xi)=\exp (t \tilde{\lambda}(\xi)) v_{(\alpha)}^{\perp}(\xi) .
$$

Then $v^{\downarrow}=v_{(\alpha)}^{\downarrow}(t, \xi)(t \geqq 0)$ is the solution of the equation (2) with the initial condition $v_{(\alpha)}^{\downarrow}(0, \xi)=v_{(\alpha)}^{\dagger}(\xi)$. By Lemma 2 we have $v_{(\alpha)}^{\downarrow} \rightarrow 0$ in \mathcal{S}^{k} as $\alpha \rightarrow+\infty$. Now assume that $\mathcal{R e}_{e} \tilde{\lambda}(\xi)$ is not bounded above for $0 \leqq \xi$ $<\infty$. ${ }^{7}$ Then, by Lemma 1, we have $h \geqq 1$ and $\mathcal{R e}_{e} f(0)=a>0$. Let $\phi^{\prime}(\xi)$ be the function given in Lemma 3. Then, if $\alpha>R_{1}+1$, we have

$$
\begin{aligned}
& \left\langle v_{(\alpha)}^{\perp}(\tau, \cdot), \phi^{\downarrow}(\cdot)\right\rangle_{R_{1}} \\
& \quad=\int_{-\infty}^{\infty} \psi(\xi) \rho(\xi-\alpha) \exp \left(\tau \operatorname{Re} \tilde{\lambda}(\xi)-\left(1+\xi^{2}\right)^{\iota}\right) d \xi \\
& \quad=\int_{\alpha-1}^{\alpha+1} \rho(\xi-\alpha) \exp \left(\tau \operatorname{Re} \tilde{\lambda}(\xi)-\left(1+\xi^{2}\right)^{\iota}\right) d \xi
\end{aligned}
$$

And, as

$$
\int_{\alpha-1}^{\alpha+1} \rho(\xi-\alpha) d \xi=1
$$

by mean value theorem,

$$
\left.\left\langle v_{(\alpha)}^{\dagger}(\tau, \cdot), \phi^{\dagger}(\cdot)\right\rangle=\exp \left(\tau \operatorname{Re} \tilde{\lambda}\left(\xi_{1}\right)-\left(1+\xi_{1}^{2}\right)\right)^{\iota}\right)
$$

with some $\xi_{1} \in(\alpha-1, \alpha+1)$. But, as $\operatorname{Re} \tilde{\lambda}(\xi)=\xi^{h / l}(a+\delta(\xi))$, where $\delta(\xi)$ $\rightarrow 0$ as $\xi \rightarrow \infty$, taking ε such that $0<\varepsilon<h /(2 l)$, we have, as $\alpha \rightarrow \infty$,

$$
\tau \operatorname{Re} \tilde{\lambda}\left(\xi_{1}\right)-\left(1+\xi_{1}^{2}\right)^{e}=\xi_{1}^{h / l}\left(\tau a+\delta_{1}\left(\xi_{1}\right)\right) \rightarrow+\infty,
$$

where $\delta_{1}\left(\xi_{1}\right) \rightarrow 0$ as $\xi_{1} \rightarrow \infty$. This shows that $v_{(\alpha)}^{\dagger}(\tau, \cdot) \nrightarrow 0$ in $\mathcal{S}^{\prime k}$ as $\alpha \rightarrow$ $+\infty$.
Q.E.D.

As the Fourier transform is an isomorphic and homeomorphic mapping of \mathcal{S} onto \mathcal{S} and of \mathcal{S}^{\prime} onto \mathcal{S}^{\prime}, we obtain, in consequence of Proposition, the following theorem.

Theorem. Let $\mathcal{S}^{k} \subset \mathscr{F} \subset \mathcal{S}^{\prime k}$, where the topology of the space on the left side of \subset is finer than that of on the right side of \subset. Then the Petrovski correctness is necessary for the Cauchy problem of the equation (1) to be forward \mathbb{F}-well posed.

References

[1] S. Mizohata: The Theory of Partial Differential Equations. Cambridge Univ. Press (1973).
[2] I. M. Gelfand and G. E. Shilov: Generalized Functions, Vol. 3 (Translated from Russian) (1967). Academic Press.
6) $\vec{v}^{+}=\left(\bar{v}_{1}, \cdots, \vec{v}_{k}\right)$ if $v^{4}=\left(v_{1}, \cdots, v_{k}\right)$, hence $\left(v^{4}, \vec{v}^{4}\right)=|v|^{2}$.
7) The proof goes quite similarly, when $\mathscr{R}_{e} \tilde{\lambda}(\xi)$ is not bounded above for $-\infty$ $<\xi \leqq 0$.

[^0]: 1) $u^{*} \in \mathcal{S}^{k}\left(\mathcal{S}^{\prime k}\right)$ means that $u_{\mu} \in \mathcal{S}\left(\mathcal{S}^{\prime}\right)$ for every $\mu=1, \cdots, k$, where \mathcal{S} denotes the set of all rapidly decreasing C^{∞} functions on R^{1} and \mathcal{S}^{\prime} means the dual space of \mathcal{S}.
