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102. On the Extension of a Theorem of Minkowski.

By Seigo FUKASAWA,

Mathematical Institute, Tohoku Imperial University, Sendai.

(Rec. June 15,1926. Comm. by Matsusaburd Fusiwara, M.1.4., July 12, 1926.)

In these Proceedings Vol. 2, No. 3, I have communicated my
researches about the order of |ax—y+8], extending Klein’s idea on
geometrical interpretation of continued fractions. The following are the
results which I have obtained since then concerning the same question.
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will be greater than 2. Using these @, expand B in the following
form :
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will be smaller than «;,. Evidently, if a and 8 are given, the sequence
of numbers (g, p;, #) is determined uniquely. Then :
i. The necessary and sufficient condition for

lim inf |s{ax—y+8)| =
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ii. When g¢; tends to infinity, lim inf |z(lax—y+8)| can take any

value smaller than —1—- when 8 is properly chosen. For example, if

¢i>00 and Pism <—;—, then lim inf |#{ax—y+B) | = m’.



306 S. FugAsawa. [Vol. 2,
iii. If lim inf ¢; = 2k, where k is a positive integer, then
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The sign of equality occurs for and only for the form
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and its equivalent forms. All other forms satisfy the inequality
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iv. When ¢; = 2k and p,,, = 1 for infinitely many ¢, we have
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v. If ¢; = 2k+1 for infinitely many 4, then
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except the case k = 1, in which



