122. Note on Mr. Tsuji's Theorem.

By Satoru TAKENAKA. Shiomi Institute, Ôsaka.

(Rec. Sep. 5, 1926. Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1926.)

In these Proceedings, 2 (1926), 245, Mr. TSUJI proved an interesting theorem concerning the zero points of a bounded analytic function. Analogous theorems can be established for certain classes of non-bounded functions by similar method.

1. First let f(z) be regular and analytic for |z| < 1, and suppose that

$$f(0) = 1$$
, and $\left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}} \leq M_p$, $(p: \text{real})$.

We call such a function f(z) a function of the class M_p . If we put

$$r_n^{(p)} = \frac{1}{\sqrt[n]{M_p}},$$

we can prove that

(i) Every function of the class M_p has at most n-1 roots in the circle $|z| < r_n^{(p)}$.

(ii) Among the functions of the class M_p there exists a function which has just n roots in the circle $|z| \leq r_n^{(p)}$. This function must be of the form

$$f(z) = \frac{1}{a_1a_2\cdots a_n} \cdot \frac{a_1-z}{1-\bar{a}_1z} \cdot \frac{a_2-z}{1-\bar{a}_2z} \cdots \frac{a_n-z}{1-\bar{a}_nz}$$

wh**e**re

$$|a_{\nu}| = \frac{1}{\sqrt[n]{M_p}}, \quad (\nu = 1, 2, \cdots, n).$$

These properties can be proved if we use the inequality¹⁾

$$|f(z)| \leq M_p \frac{1}{\{1-|z|^2\}^{\frac{1}{p}}} \prod_{\nu=1}^n \left| \frac{a_{\nu}-z}{1-\bar{a}_{\nu}z} \right|$$

instead of JENJEN's in TSUJI's paper, where a_{ν} ($\nu = 1, 2, ..., n$) are the roots of f(z) in |z| < 1 in ascending order of absolute values.

¹⁾ S. TAKENAKA, On the power series whose values are given at given points, Japanese Journal of Mathematics, 2 (1925), 81.

In particular, if we make $p \rightarrow \infty$, we have Tsuji's theorem.

2. Next let f(z) be regular and analytic for |z| < 1, and suppose that

$$f(0) = 1$$
 and $\frac{1}{2\pi} \int_0^{2\pi} \log |f(e^{i\theta})| d\theta \leq \log M_0^{-1}$,

We call such a function f(z) a function of the class M_0 .

If a_{ν} ($\nu = 1, 2, \dots, n$) are the roots of f(z) = 0 in ascending order of absolute values, we have

$$1 = f(0) \leq M_0 \prod_{\nu=1}^n |a_{\nu}|^{2}.$$

Then if we put

$$r_n=\frac{1}{\sqrt[n]{M_{\cdot}}},$$

we can prove that

(i) Every function of the class M_{3} has at most n-1 roots in the circle $|z| < r_{n}$.

(ii) Among such functions of the class M_3 , there exists a function which has just n roots in the circle $|z| \leq r_n$. This function must be of the form

$$f(z) = \frac{1}{a_1 a_2 \cdots a_n} \cdot \frac{a_1 - z}{1 - \overline{a}_1 z} \cdot \frac{a_2 - z}{1 - \overline{a}_2 z} \cdots \frac{a_n - z}{1 - \overline{a}_n z},$$

where

$$|a_{\nu}| = \frac{1}{\sqrt[n]{M_0}}, \quad (\nu = 1, 2, \cdots, n)$$

No. 8.]

¹⁾ $\log^{+} a$ stands for $\log a$, if a > 1, and 0, if $a \leq 0$.

²⁾ S. TAKENAKA, loc. cit., 90.