122. Note on Mr. Tsuji's Theorem.

By Satoru Takenaka.
Shiomi Institute, Osaka.

(Rec. Sep. 5, 1926. Comm. by M. Fujwara, m.i.a., Oct. 12, 1926.)

In these Proceedings, 2 (1926), 245, Mr. Tsuju proved an interesting theorem concerning the zero points of a bounded analytic function. Analogous theorems can be established for certain classes of non-bounded functions by similar method.

1. First let $f(z)$ be regular and analytic for $|z|<1$, and suppose that

$$
f(0)=1, \quad \text { and } \quad\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f^{(}\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}} \leqq M_{p},(p: \text { real }) .
$$

We call such a function $f(z)$ a function of the class M_{p}.
If we put

$$
r_{n}^{(p)}=\frac{1}{\sqrt[n]{M_{p}}}
$$

we can prove that
(i) Every function of the class M_{p} has at most $n-1$ roots in the circle $|z|<r_{n}^{(p)}$.
(ii) Among the functions of the class M_{p} there exists a function which has just n roots in the circle $|z| \leqq r_{n}^{(p)}$. This function must be of the form

$$
f(z)=\frac{1}{\alpha_{1} \alpha_{2} \cdots \alpha_{n}} \cdot \frac{\alpha_{1}-z}{1-\bar{\alpha}_{1} z} \cdot \frac{\alpha_{2}-z}{1-\bar{\alpha}_{2} z} \cdots \frac{\alpha_{n}-z}{1-\bar{\alpha}_{n} z},
$$

where

$$
\left|\alpha_{\nu}\right|=\frac{1}{\sqrt[n]{M_{p}}}, \quad(\nu=1,2, \cdots, n)
$$

These properties can be proved if we use the inequality ${ }^{1)}$

$$
|f(z)| \leqq M_{p} \frac{1}{\left\{1-|z|^{2}\right\}^{\frac{1}{p}}} \prod_{\nu=1}^{n}\left|\frac{a_{\nu}-z}{1-\bar{\alpha}_{\nu} z}\right|
$$

instead of Jenjen's in Tsuji's paper, where $a_{\nu}(\nu=1,2, \ldots, n)$ are the roots of $f(z)$ in $|z|<1$ in ascending order of absolute values.

1) S. Takenaka, On the power series whose values are given at given points, Japanese Journal of Mathematics, 2 (1925), 81.

In particular, if we make $p \rightarrow \infty$, we have 'Tsusi's theorem.
2. Next let $f(z)$ be regular and analytic for $|z|<1$, and suppose that

$$
f(0)=1 \quad \text { and } \quad \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| d \theta \leqq \log M_{0}^{1)}
$$

We call such a function $f(z)$ a function of the class M_{0}.
If $a_{\nu}(\nu=1,2, \cdots, n)$ are the roots of $f(z)=0$ in ascending order of absolute values, we have

$$
1=f(0) \leqq M_{0} \prod_{\nu=1}^{n}\left|a_{\nu}\right|^{2)}
$$

Then if we put

$$
r_{n}=\frac{1}{\sqrt[n]{\bar{M}}}
$$

we can prove that
(i) Every function of the class $M_{,}$has at most $n-1$ roots in the circle $|z|<r_{n}$.
(ii) Among such functions of the class M_{3}, there exists a function which has just n roots in the circle $|z| \leqq r_{n}$. This function must be of the form

$$
f^{\prime}(z)=\frac{1}{\alpha_{1} \alpha_{2} \cdots \alpha_{n}} \cdot \frac{\alpha_{1}-z}{1-\bar{\alpha}_{1} z} \cdot \frac{\alpha_{2}-z}{1-\bar{\alpha}_{2} z} \cdots \frac{\alpha_{n}-z}{1-\bar{\alpha}_{n} z},
$$

where

$$
\left|\alpha_{\nu}\right|=\frac{1}{\sqrt[n]{M_{0}}}, \quad(\nu=1,2, \cdots, n)
$$

