34. On a Property of Transcendental Integral Functions.

By Tatsujiro Shimizu.
Mathematical Institute, Tokyo Imperial University.
(Rec. Feb. 25, 1927 Comm. by T. Takagi, m. i. a., March 12, 1927.)
Mr. Tsuji ${ }^{1}$ proved that for a class of integral functions $f(z)$, for which $f(0)=a, f\left(z_{i}\right)=b,(i=1,2, \cdots)$, where $a \neq b, a \equiv 0, \neq 1$, and $b \neq 0, \neq 1$ and $\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq \cdots \rightarrow \infty$, there exists an infinite number of concentric ring-regions $|z|<R_{1}, R_{i}<|z|<R_{i+1}(i=1,2, \cdots), R_{i}$ depending only on the class, in which all the functions of the class take at least once the value 1 or 0 .

We will here prove the following allied
Theorem: Consider a class of integral functions

$$
\begin{equation*}
f(z)=c_{0}+c_{1} z+c_{2} z^{2}+\cdots+c_{m} z^{m}+\cdots \cdots \cdots, \tag{1}
\end{equation*}
$$

for which $\left|c_{m}\right| \geqq \frac{l_{3}}{m!}>0$ for a certain value of $m \geqq 1$, and $\left|f\left(z_{i}\right)\right|=l_{i}<M$ $(i=1,2, \cdots)$, where l_{i} are positive constants ${ }^{2}$ and $\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq \cdots \rightarrow \infty$, then there exists an infinite number of concentric ring-regions $|z|<R_{1}, R_{i}<|z|<$ $R_{i+1},(i=1,2, \cdots), R_{i}$ depending only on the class, in which any function (1) takes at least once the ralue 1 or 0 , and we can find an expression for an infinite number of radii R_{i} of the ring-regions $R_{i}<|z|<R_{i+1}$.

Proof. Suppose, if possible, that a function (1) does not take the values 1 and 0 in the ring-region $0 \leqq R_{0}<|z|<R, R=2\left(r_{i}-R_{1}\right)+R_{3}$, where $\left|z_{i}\right|=r_{i}$, and therefore in the circle of radius $r_{i}-R_{0}$ with center at z_{i}, then by Landau's theorem ${ }^{3)}$ we have in $\left|z-z_{i}\right|<\frac{r_{i}-R_{n}}{2}$

$$
\begin{equation*}
|f(z)|<\Omega(M) . \tag{2}
\end{equation*}
$$

Now take $2 q\left(q<\left[\frac{2 \pi}{1-R_{J} / r_{i}}\right]+1\right)$ circles $C_{i, \pm n}(h=1,2, \cdots q)$ of radius

[^0]$\frac{r_{i}-R_{1}}{2}$ with centers on the circle $|z|=r_{i}$, so that they cover the whole circumference $|z|=r_{i}$, the center of $C_{i, \pm n}$ lying within $C_{i, \pm(h-1)}$, then by successive application of Landau's inequality to the circles of radii $r_{i}-R_{J}$ about the same centers we have
\[

$$
\begin{equation*}
|f(z)|<\Omega^{(q)} .(M)^{1)} \tag{3}
\end{equation*}
$$

\]

in the region covered by these circles $C_{i, \pm n}$. In this region and a fortiori in the circle $|z| \leqq r_{i}$ we have, as $q<[4 \pi]+1=13$, for $r_{i}>2 R_{\mathrm{J}}$,

$$
\begin{equation*}
|f(z)|<\Omega^{(13)}(M)^{2)} \tag{4}
\end{equation*}
$$

For all $r_{i}>2 R_{0}$ we have from (4)

$$
\begin{equation*}
\left|c_{m}\right| \leqq \operatorname{Max}_{|z|=r_{i}}|f(z)| / r_{i}^{m} \leqq Q^{(13)}(M) / r_{i}^{m} \tag{5}
\end{equation*}
$$

$\left|c_{m}\right| \neq 0$ being given, for all r_{i} which satisfies the inequalities
and

$$
\begin{gather*}
r_{i}>2 R_{0} \tag{6}\\
r_{i}^{m}>\frac{1}{\left|c_{m}\right|} \Omega^{(13)}(M) \tag{7}
\end{gather*}
$$

the function (1) must assume at least once the value 1 or 0 in the ringregion $R_{0}<|z|<2 r_{i}-R_{J}$.

Hence for $R_{\mathrm{J}}=0$ we obtain the circle $|z|<R_{1}=2 r_{i_{1}}$, $r_{i_{1}}$ satisfying (7), in which the function (1) takes the value 1 or 0 . We can next take $R_{2}=2 r_{i_{2}}-R_{1}$ as the outer radius of the ring-region $R_{1}<|z|<R_{2}$, where

$$
\begin{equation*}
r_{i_{2}}>2 R_{1}, \tag{8}
\end{equation*}
$$

and consequently by (7), (8) $r_{i_{2}}^{m}>\frac{1}{\left|c_{m}\right|} \Omega^{(13)}(M)$. Prcoeeding in this way we have in general
where

$$
\begin{gathered}
r_{i_{p}}>2 R_{p-1}, R_{p}=2 r_{i_{p}}-R_{p-1} \\
r_{i_{1}}>\sqrt[m]{\frac{1}{\left|c_{m}\right|} \Omega^{(13)}(M)} \quad(p \geqq 1),
\end{gathered}
$$

From this theorem, which is not essentially different from Mr. Tsuji's, his theorem can be obtained as follows.

[^1]Considering $\left|f\left(z_{\mathrm{i}}\right)-f(0)\right|=\left|\int_{0}^{z_{1}} f^{\prime}(z) d z\right|=|b-a|$ we must have at least one point η_{f} on the segment $\left(\overline{0 z_{1}}\right)$ at which $\left|f^{\prime}\left(\eta_{f}\right)\right| \geqq l_{0}=\frac{|b-a|}{\left|z_{1}\right|}$ for all the functions (1). In order to apply the above theorem it is necessary to replace (5) by $\left|C_{1}\right| \leqq \Omega^{(q)}(M) /\left|z_{i}-\eta_{f}\right|$. And from $\left|\eta_{f}\right| \leqq\left|z_{1}\right|$ and $R_{i}-R_{1}>\left|z_{1}\right|$, we can obtain an infinite number of concentric ring-regions $R_{i}^{\prime}<|z|$ $<R^{\prime}{ }_{i+1}$, in which all the functions (1) take at least once the value 1 or 0 by taking $R_{n+1}^{\prime}=R_{2+3 n}$.

Similar method admits us to find an expression for an infinite number of radii of concentric ring-regions $R_{i}<|z|<R_{i+1}$, where all the functions of a class of integral functions $f(z)$, for which $\left|f^{(m)}\left(z_{0}\right)\right| \geqq l_{0}>0$ and $\left|f\left(z_{i}\right)\right|<\left|z_{i}\right|^{p},(i=1,2, \cdots),\left|z_{1}\right| \leqq\left|z_{2}\right| \leqq \cdots \rightarrow \infty, p$ being a fixed constant, take at least once the value 1 or 0 , provided that the integer $m>(4 p) 4^{8 \pi}$.

ERRATA

in my Note: On Some Properties ef Meromorphic Functions. (Vol. 2 (1926) 466-469).
Page 469, line 5 read " R_{n+1} " for " R_{η} ".
Page 469, line 7, read "[] ${ }^{\rho "}$ for "[]".
Page 469, add " where $s=x_{n}, p=x_{n-1}$ " to the end.

[^0]: 1) Proc. Imperial Academy, 2 (1926) 364-365.
 2) In this case it is not necessary that $c_{m} \neq l_{i}$.
 3) Götting. Nachr. (1910), 309.
[^1]: 1) $\Omega^{(q)}(M)$ denotes the q-th iteration of $\Omega(M)$.
 2) It follows from Landau's expression of $\Omega(M)$ that $M^{4} D$ can be used for $\Omega(M)$, when M is larger than a fixed number, D being a numerical constant. By using it for $\Omega(M)$ the right-hand side of (4) becomes

 $$
 M^{1^{13}} D^{1+4+\ldots+4^{12}} .
 $$

 c.f. Proc. Phy-Math. Soc. Japan, Ser (3), 8 (1926). 174.

