32. Note on a Theorem of Fekete.

By Buchin Su.
Mathematical Institute, Tohoku Imp. Unjversity, Sendai.

(Rec. Feb. 15, 1927. Comm. by M. Fujiwara, m. i. a., March 12, 1927.)

1. Fekete ${ }^{1)}$ and Bálint ${ }^{2)}$ proved the following theorem :

If

$$
P(z)=p_{0}+p_{1} z^{\mu_{1}}+p_{2} 2^{\mu_{2}}+\cdots \cdots \cdots \cdots \cdots+p_{k^{2}} 2^{\mu_{k}}
$$

be a polynomial with $k+1$ terms ($p_{0}, p_{1} \cdots \cdots \cdots, p_{k}$ are any complex numbers other than zero; and $\mu_{1}, \mu_{2}, \cdots \cdots \cdots, \mu_{k}$ are integers such that $1 \leqq \mu_{1}$ $<\mu_{2}<\cdots \cdots<\mu_{k}$), and $P(-1) \neq P(+1)$, then there exists at least one point z in the circle $|z| \leqq 2 \cdot k \cot \frac{\Phi}{2}\left(\Phi \leqq \frac{\pi}{2}\right)$ in which $P(z)$ takes any given value γ in the domain K^{\prime}, whose boundary consists of two circular arcs subtending an angle Φ to the segment joining the points $P(-1)$ and $P(+1)$.

We can, however, extend this domain for γ into the circle K with centre $\left\{P(-1)+P^{\prime}(+1)\right\} / 2$ and radius $\left\{\left|P(+1)-P^{\prime}(-1)\right| \cot \frac{\Phi}{2}\right\} / 2$, which contains K^{\prime}.

Our theorem runs as follows:
Theorem 1. Let $P(-1) \neq P(+1)$, and γ be any point in the circle K with centre $\{P(-1)+P(+1)\} / 2$ and radius $\frac{1}{2}|P(+1)-P(-1)| \cot \frac{\Phi}{2}$, where $\Phi \leqq \frac{\pi}{2} . \quad$ Then there exists at least one point z in the circle $|z| \leqq 2 k \cot \frac{\Phi}{2}$, in which $P^{\prime}(z)$ takes the value γ.

Proof. Draw two circular arcs passing through the points $P(-1)$, $P(+1)$, subtending an angle $\Phi \leqq \frac{\pi}{2}$. Let $A A^{\prime}, B B^{\prime}$ be the common tangents of two circles and O the midpoint of $M(P(-1)) N(P(+1))$. Take a point Q on $A A^{\prime}$ and a point $R(\gamma)$ on the line $O Q$. Then since we have

1) Fekete, Jahrsb. d. Deutsch. Math. Ver. 32 (1923), 299-306.
2) Bálint, The same Journal, 34 (1926), 233-237.

$$
\begin{equation*}
\overline{O Q}=\overline{O N^{\prime}} / \cos \varphi=\overline{P N} / \cos \varphi=\overline{O N} /\{\sin \Phi \cos \varphi\} \tag{1}
\end{equation*}
$$

putting

$$
\begin{align*}
\overline{O R} / \overline{O Q}=\lambda, \overline{2} \overline{O N} \cdot e^{i a} & =|P(+1)-P(-1)| \cdot e^{i a} \\
& \left.=P_{(}+1\right)-P(-1) \tag{2}
\end{align*}
$$

we get $\quad r=\{P(+1)+P(\overline{-1})\} / 2+\overline{O R} e^{i(\varphi+a)}$
$\left.\left.\left.=\left\{P^{\prime}+1\right)+P^{\prime}-1\right)\right\} / 2+\left[\lambda e^{i \varphi}\left\{P^{\prime}+1\right)-P(-1)\right\}\right] /\{2 \sin \Phi \cos \varphi\}$,
i.e.

$$
\begin{equation*}
\left.r=\sigma P(-1)+\tau P^{\prime}+1\right) \tag{3}
\end{equation*}
$$

where $\sigma=\frac{1}{2}\left\{1-\frac{\lambda e^{i \varphi}}{\sin \Phi \cos \varphi}\right\}, \tau=\frac{1}{2}\left\{1+\frac{\lambda e^{i \varphi}}{\sin \Phi \cos \varphi}\right\}$,
whence

$$
\begin{equation*}
\tau+\sigma=1,|\tau-\sigma|=\frac{\lambda}{\sin \Phi \cos \varphi} \tag{4}
\end{equation*}
$$

Now consider the locus of R for which $\frac{\lambda}{\sin \Phi \cos \varphi}=\cot \frac{\Phi}{2}$, which reduces, by means of (1) and (2), to the relation $\overline{O R}=\lambda \cdot \overline{O Q}=$ $\overline{O N} \cot \frac{\Phi}{2}$, or

$$
\begin{equation*}
O R=\left|\frac{P(+1)-P(-1)}{2}\right| \cdot \cot \frac{\Phi}{2} . \tag{5}
\end{equation*}
$$

That is, the locus of R is the circle K, mentioned in the theorem, which touches obviously the above circular arcs.

Thus for γ in K or on the boundary, we have

$$
\begin{equation*}
|\tau-\sigma| \leqq \cot \frac{\Phi}{2} \tag{6}
\end{equation*}
$$

From (3), we get

$$
\begin{gathered}
(\sigma+\tau) p_{0}-\gamma+p_{1} r_{1}+p_{2} r_{2}+\cdots \cdots \cdots+p_{k} r_{k}=0 \\
r_{s}=(-1)^{\mu_{s}} \sigma+\tau, \quad s=1,2,3, \cdots \cdots \cdots, k \\
\left|p_{0}-\gamma\right| \leqq \cot \frac{\phi}{2} \cdot\left(\left|p_{1}\right|+\left|p_{2}\right|+\left|p_{3}\right|+\cdots \cdots \cdots+\left|p_{k}\right|\right)
\end{gathered}
$$

since $\left|r_{s}\right|=\left|(-1)^{\mu_{s}} \sigma+\tau\right| \leqq \cot \frac{\Phi}{2}$.
Therefore there exists an integer $s \leqq k$, for which $\left|p_{0}-\gamma\right| \leqq 2^{s}\left|p_{s}\right| \cot \frac{\Phi^{1)}}{2}$,
whence

$$
\begin{equation*}
\left|\frac{p_{0}-\gamma}{p_{s}}\right|^{\frac{1}{\mu_{s}}} \leqq 2^{\frac{s}{\mu_{s}}}\left(\cot \frac{\Phi}{2}\right)^{\frac{1}{\mu_{s}}} \leqq 2 \cot \frac{\Phi}{2} . \tag{7}
\end{equation*}
$$

Then it follows ${ }^{2}$ that the equation

$$
P(z)-\gamma=p_{0}-\gamma+p_{1} z^{\mu_{1}}+p_{2} z^{\mu_{2}}+\cdots \cdots \cdots+p_{k} z^{\mu_{k}}=0
$$

has at least one root in the circle $|z| \leqq r$, where

$$
r \leqq k\left|\frac{p_{0}-\gamma}{p_{s}}\right|^{\frac{1}{\mu_{s}}} \leqq 2 k \cot \frac{\Phi}{2}
$$

Thus the theorem is proved.
2. Next we can prove the following

Theorem 2. Let $\left.\left.r=\sigma P^{\prime}-1\right)+\tau P^{\prime}+1\right)$, where

$$
\begin{equation*}
\sigma+\tau=1, \quad|\tau-\sigma| \leqq M \tag{8}
\end{equation*}
$$

Then there exists at least one point z in the circle $|z| \leqq 2 \cdot M k$ for which $P(z)$ takes any value γ^{*} in the circle K_{1} (inclusive of the boundary) with centre $\{P(-1)+P(+1)\} / 2$ and radius $|\gamma-\{(P(-1)+P(+1))\} / 2|$.

Proof. By the hypothesis, we can find for any γ^{*} in K_{1}, λ and φ, such that

$$
\gamma^{*}=\frac{\left.P(-1)+P_{i}^{\prime}+1\right)}{2}+\lambda\left\{r-\frac{P(-1)+P(+1)}{2}\right\} e^{i \varphi},(0 \leqq \lambda \leqq 1) .
$$

That is

$$
\begin{equation*}
\left.\gamma^{*}=\sigma^{*} P(-1)+\tau^{*} P^{\prime}+1\right) \tag{9}
\end{equation*}
$$

where

$$
\sigma^{*}=\frac{1}{2}+\sigma \lambda e^{i \varphi}-\frac{1}{2} \lambda e^{i \varphi}, \quad \tau^{*}=\frac{1}{2}+\tau \lambda e^{i \varphi}-\frac{1}{2} \lambda e^{i \varphi},
$$

1) Fekete, loc. cit. 303.
2) Fekete, loc. cit. Hilfsatz V, 300-301.
whence

$$
\sigma^{*}+\tau^{*}=1, \quad\left|\tau^{*}-\sigma^{*}\right| \leqq M .
$$

Hence we can prove our theorem by a similar way as the last part of the proof of Theorem 1.

From this theorem we can deduce Theorem 1; for, we may take γ lying collinear with the points $\left.P(-1), P_{(}^{\prime}+1\right)$ so that $\sigma>0, \tau<0$. Then from the relations $\tau+\sigma=1, \quad \sigma-\tau=M$, we get $\sigma=\{M-1\} / 2$, $\tau=-\{M-1\} / 2$, whence

$$
\left|r-\frac{\left.P^{\prime}(-1)+P_{(}^{\prime}+1\right)}{2}\right|=M \cdot\left|\frac{\left.\left.P_{(}^{\prime}+1\right)-P_{(}^{\prime}-1\right)}{2}\right|
$$

Hence putting $M=\cot \frac{\Phi}{2}$, we get Theorem 1.
3. Finally we can extend these results to power series:

Theorem 3. If $f(z)=p_{0}+p_{1} z^{\mu_{1}}+p_{2} z^{\mu_{2}}+\cdots+p_{k} z^{\mu k}+\cdots \cdots$ be a transcendental integral function, for which the series $\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\cdots \cdots$ converges, and $f(-1) \neq f(+1)$, then $f(z)$ takes any value in the circle K in the Theorem 1 for at least one point z in the circle $|z| \leqq 8 \exp \left\{\sum_{k=2}^{\infty} \frac{1}{\mu_{k}-1}\right\} \cdot \cot \frac{\Phi}{2}$.

Similarly the theorem corresponding to Theorem 2 can be easily seen.

In conclusion I express my cordial thanks to Prof. Y. Okada for his kind suggestion.

