89. Fundamental Forms in the Projective Differential Geometry of m-parametric Families of Hypersurfaces of the Second Order in the n-Dimensional Space.

By Akitsugu Kawaguchi.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Rec. May 31, 1927. Comm. by M. Fujiwara, m.I.A., June 12, 1927.)

1. As I have already reported in another place, it seems to be very natural, to consider hypersurfaces of the second order as space-elements, when we intend to establish the projective differential geometry in the n-dimensional space. ${ }^{1)}$ Therefore the first problem to deal with is the projective theory of m-parametric families of hypersurfaces of the second order. In this paper I shall determine the fundamental forms in the projective differential geometry of m-parametric families of hypersurfaces of the second order and then add their geometrical meanings.
2. Notations. In homogeneous point-coordinates $x_{\lambda}(\lambda=0,1,2, \ldots$ \ldots, n) an m-parametric family of hypersurfaces of the second order is represented by the equation
where

$$
\begin{gathered}
\sum_{\lambda, \mu} \bar{a}_{\lambda \mu} x_{\lambda} x_{\mu}=0, \\
\bar{a}_{\lambda \mu}=\bar{a}_{\lambda \mu}\left(u^{1}, u^{2}, \ldots \ldots, u^{n}\right) .
\end{gathered}
$$

Then let us take

$$
a_{\lambda \mu}=\{(n+1) \Delta\}^{-\frac{1}{n+1}} \bar{a}_{\lambda \mu}
$$

as its normalized coordinates, where we represent the determinant $\bar{a}_{\lambda \mu} \mid$ by Δ. Now we denote briefly a system of numbers $a_{\lambda \mu}$ by \mathfrak{a}, fol-

[^0]lowing the vector-notation, and a system of numbers $n!A_{\lambda \mu}$ by \mathfrak{A}, where $A_{\lambda \mu}$ is the algebraic complement of $a_{\lambda \mu}$ in the determinant $\left|a_{\lambda \mu}\right|$. Put
where \sum is extended over all permutations of ($i_{0}, i_{1}, \ldots \ldots, i_{n}$). Moreover, we define the scalar product of two vectors \mathfrak{a} and \mathfrak{B} as follows :
$$
\mathfrak{a} \mathfrak{B}=\sum_{\lambda, \mu} n!a_{\lambda \mu} B_{\lambda \mu},
$$
then we have
$$
\mathfrak{a} \mathfrak{Y}=(\mathfrak{a}, \mathfrak{a}, \ldots \ldots, \mathfrak{a})=1 .
$$
3. Fundamental forms. Let us consider
\[

$$
\begin{aligned}
& G_{2} \equiv g_{i k} d u^{i} d u^{k}=n\left(\mathfrak{a}_{i}, \mathfrak{a}_{k}, \mathfrak{a} \ldots \ldots, \mathfrak{a}\right) d u^{i} d u^{k} \\
& A_{3} \equiv A_{i j k} d u^{i} d u^{j} d u^{k}=(n-1)\left(\mathfrak{a}_{i}, \mathfrak{a}_{j}, \mathfrak{a}_{k}, \mathfrak{a}, \ldots \ldots, \mathfrak{a}\right) d u^{i} d u^{j} d u^{k} . .^{1)}
\end{aligned}
$$
\]

These differential forms are evidently invariant under the group of unimodular projective transformations and under the change of parameters. Let us consider such vectors \mathfrak{X}_{α}, \mathfrak{X}^{β}, that

$$
\begin{gathered}
\mathfrak{x}_{\alpha} \mathfrak{H}=\mathfrak{x}_{\alpha} \mathfrak{H}_{i}=\mathfrak{a} \mathfrak{X}^{\beta}=\mathfrak{a}_{k} \mathfrak{X}^{\beta}=0, \\
\mathfrak{C}_{\alpha} \mathfrak{X}^{\beta}=\delta_{\alpha \beta}{ }^{2} \\
\left(\alpha=1,2, \ldots \ldots, \frac{(n+1)(n+2)}{2}-m-1\right),
\end{gathered}
$$

and further consider $g_{i k}$ as the fundamental tensor and introduce the covariant differentiation. Then the covariant derivatives of \mathfrak{a}_{i} and \mathfrak{A}_{k} can be represented as follows :

1) Here $\mathfrak{a}_{i}=\frac{\partial a}{\partial u^{i}}$ and the repeated indices $i, j, k, \ldots \ldots$, one upper and another lower, are summed over $1,2, \ldots, m$ and $\alpha, \beta, \gamma, \ldots$ over $1,2, \ldots, \frac{(n+1)(n+2)}{2}-m-1$.
2) $\delta_{\alpha \beta}=1$ for $\alpha=\beta$ and $\delta_{\alpha \beta}=0$ for $\alpha \neq \beta$.

$$
\begin{gather*}
\mathfrak{a}_{i j}=-g_{i j} \mathfrak{a}-\frac{1}{2} A_{i j k} g^{k l} \mathfrak{a}_{l}+B_{i j}{ }^{\alpha} \mathfrak{G}_{a}, \tag{1}\\
\mathfrak{U}_{k j}=-g_{k j} \mathfrak{U}+\frac{1}{2} A_{i j k} g^{j l} \mathfrak{U}_{l}+\bar{B}_{i k \beta} \mathfrak{X}^{\beta} .
\end{gather*}
$$

Moreover we get

$$
\begin{align*}
& \mathfrak{x}_{\alpha, i}=-\bar{B}_{i l a} g^{l k} \mathfrak{a}_{k}+p_{i a}^{i a} \mathfrak{C}_{\mathrm{r}}, \tag{2}\\
& \mathfrak{X}_{k}^{\beta}=-B_{k l} g^{i i} \mathfrak{A}_{i}-p_{k r}{ }^{\beta} \mathcal{X}^{\top}, \\
& \mathfrak{a}_{i j} \mathfrak{X}^{\mathfrak{\beta}}=B_{i j}{ }^{\mathfrak{\beta}}, \quad \mathfrak{U}_{i j{ }_{j}}=\bar{B}_{i j a}, \\
& \mathfrak{X}_{\alpha} \mathfrak{X}^{\beta}{ }_{, k}=-\mathfrak{X}_{\alpha, k} \mathfrak{X}^{\beta}=p_{k a}^{\cdot \beta} .
\end{align*}
$$

$p_{i \dot{k a}}{ }^{\beta}$ can be determined by the quantities $g_{i k}, A_{i j k}, B_{k i}{ }^{\alpha}, \widetilde{B}_{k l \beta}$.
From (1) new differential forms

$$
\begin{aligned}
& B_{2}^{\alpha}=B_{k i l}^{\alpha} d u^{k} d u^{l} \\
& \bar{B}_{2 \beta}=\bar{B}_{k l \beta} d u^{k} d u^{l}
\end{aligned}
$$

appear, besides G_{2} and A_{3}. These forms are apparently invariant under the group of unimodular projective transformations and under the change of parameters, which we adopt also as the fundamental forms.
4. Gauss-Codazzi relaíions (conditions of integrability). From (1) and (2) we can easily derive the following relations :

$$
\begin{aligned}
& \mathfrak{A}_{i j m}=\frac{1}{2} A_{i j m} \mathfrak{A}-g_{i j} \mathfrak{U}_{m}+\left(\frac{1}{4} A_{i j}^{\cdot k} A_{\dot{k m}}^{l}+\frac{1}{2} A_{i j,{ }_{j}, \dot{m}}-\bar{B}_{i j \alpha} B_{m}^{, l \alpha}\right) \mathfrak{U}_{l} \\
& +\left({\overline{B_{i j \alpha}, m}}-\bar{B}_{i j \beta} p_{\dot{m} \dot{\alpha}}^{\beta}+\frac{1}{2} A_{i j}^{k} \bar{B}_{k m \alpha}\right) \mathfrak{X}^{\alpha},
\end{aligned}
$$

where

$$
A_{i j}^{l}=g^{k k} A_{i j k}, \quad B_{m}^{\cdot k}=g^{k l} B_{m l}, \quad \text { etc. }
$$

From (3) we get by simple calculation

$$
\begin{aligned}
& +\left({\overline{B_{i}(j|\alpha|, m]}}-{\overline{B_{i}(i|\beta|}}^{\left.p_{\dot{3}] \dot{x}}{ }^{\beta}+\frac{1}{2} A_{i(j}{ }^{k} \bar{B}_{m\} k a}\right) \mathfrak{X}^{\alpha} .}\right.
\end{aligned}
$$

But by the theorem of Ricci we know that the following relations hold good :

$$
\begin{equation*}
\mathfrak{a}_{i(j m)}=K_{j m i} \dot{a}_{l}^{l}, \quad \mathfrak{A}_{i(j m)}=K_{j m i}{ }^{l} \mathfrak{A}_{l}, \tag{5}
\end{equation*}
$$

where $K_{j m i}$ denotes Riemann's curvature-tensor. Therefore we must have

$$
\begin{align*}
& \frac{1}{4} A_{i[j}{ }^{j} A_{\dot{m}] i^{l}}^{l}+\frac{1}{2} A_{i\left[j^{j}, \dot{m}\right]}^{l}-B_{[\dot{m}}{ }^{l \alpha} \bar{B}_{j j i a}=K_{\dot{j} \dot{m} i}^{l}, \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \bar{B}_{i(j|\alpha|, m)}-\bar{B}_{i(j|\beta|} p_{m j x^{\beta}}^{\beta}+\frac{1}{2} A_{i\left(c_{j}^{k}\right.} \bar{B}_{m j z a}=0 . \tag{8}
\end{align*}
$$

From (6) and (7), which are essentially identical with each other,

These relations (8) and (9) are the equations, which correspond to the so-called Gauss-Codazzi equations, i.e. the conditions of integrability in our case.
5. The fundamental theorem. We can now prove the fundamental theorem :

The famliy of hypersurfaces of the second order is uniquely determined, except for the projective transformations, by the forms $G_{2}, A_{3}, B_{2}{ }^{\text {a }}$, $\overline{B_{2 \beta}}$ and $p_{i \alpha}{ }^{\text {B }}$, among which the relations (8) and (9) hold.

[^1]6. Other relations. From (2) we have
and
\[

$$
\begin{aligned}
& \mathfrak{x}_{\alpha k} \mathfrak{X}_{l}^{\beta}=\bar{B}_{k j \alpha} B_{i}^{j \beta}-p_{\dot{k} \dot{\alpha}}^{\top} p_{i r}{ }^{\beta}, \\
& \mathfrak{c}_{\alpha k} \mathfrak{x}_{i}^{\beta}+\mathfrak{x}_{\alpha k l} \mathfrak{x}^{\beta}=p_{\dot{k} \dot{\alpha}^{\beta}, \dot{m},},
\end{aligned}
$$
\]

i. e.

$$
\begin{equation*}
\mathfrak{x}_{\alpha(k} \mathfrak{X}^{\beta}, b=p_{\left(\dot{k}|\dot{\alpha}|^{\beta}, m\right)}=\bar{B}_{i(k|\alpha|} B_{i}^{i \beta}, \tag{10}
\end{equation*}
$$

and also from (1)
7. Geometrical meaning of the fundamental forms. Now we consider the geometrical meaning of the fundamental forms. First the ∞^{m-1} directions defined by $G_{2}=0$ are such that the hypersurfaces of the second order da, which belong to the sheaf determined by \mathfrak{a} and the consecutive hypersurfaces of the second order $\mathfrak{a}+d \mathfrak{a}$ in that directions and which have apolarity of the first order ${ }^{1)}$ to \mathfrak{a}, have also apolarity of the second order to a. The ∞^{m-1} directions defined by $A_{3}=0$ are such that the hypersurfaces $d \mathfrak{a}$, above mentioned, have apolarity of the third order to a. $\quad B_{2}{ }^{\alpha}=0$ defines the ∞^{m-1} directions such that the hypersurfaces $d a$ have apolarity of the first order to $d \mathfrak{X}^{\alpha}$, and similarly for $\bar{B}_{28}=0$.

In the special case $n=2, G_{2}=0$ defines the directions in which \mathfrak{a} is apolar to the conics $d \mathfrak{a}$, and $A_{3}=0$ the directions in which every $d \mathfrak{a}$ reduces to two straight lines.
8. Projective principal hypersurfaces of the second order. At every \mathfrak{a} of the family we consider the hypersurfaces of the second order defined by

$$
\begin{align*}
& \mathfrak{p}=g^{i j} \mathfrak{a}_{i j}=-m \mathfrak{a}-\frac{1}{2} g^{i j} \mathrm{~A}_{i j}^{l} \mathfrak{a}_{l}+g^{i j} B_{i j^{*}} \mathfrak{x}_{\alpha} \tag{12}\\
& \mathfrak{P}=g^{i j \mathfrak{N}_{i j}=-m \mathfrak{A}+\frac{1}{2} g^{i j} A_{i j}{ }^{l} \mathfrak{U}_{l}+g^{i j} \bar{B}_{i j \beta} \mathfrak{X}^{\beta},}
\end{align*}
$$

which are invariant under the group of unimodular projective transformations as well as under the change of the parameters. So we call them the principal direct and correlative hypersurfaces of the second order at \mathfrak{a} of the family.

[^2]
[^0]: 1) See my previous papers: On the projective differential geometry of plane curves and one-parameter families of conics, these Proceedings, 2, 307-309, 1926; and Projective differential geometrical properties of the one-parameter families of point-pairs in the one-dimensional space, these Proceedings, 3, 6-8, 1927. See also my papers: Über die projektive Differentialgeometrie I, II, III, Tôhoku Math. Journal, 28, 1927.
[^1]: 1) We introduce the following notation after Schouten: $\Omega_{[i j)}=\Omega_{i j}-\Omega_{j i}$ for ex.

[^2]: 1) Arolarity of the p-th order to \mathfrak{a} means that $(\mathfrak{b}, \mathfrak{b}, \ldots \ldots, \mathfrak{b}, \mathfrak{a}, \ldots \ldots, \mathfrak{a})=0$, in which the number of the \mathfrak{b} 's is p. Especially apolarity of the first order is the apolarity, in the usual sense, that is, the circumscribing of a self-polar $(n+1)$-polytope of \mathfrak{a}.
