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(Rec. April 25,1928. Comm. by T. TAKAGI, M.I.A., May 12, 1928.)
Theorem. Let
@ Jm(@)=1+ax+ax®+...... + Qe
be the km-th section of a power series
@) f@=1+axw+ax®+....+a2"+......

where k is a given positive integer.

If fim(x)=0 has all their rootson |z|=1 for m=1, 2,...,
then we have

_ l+awe®+....+az1(xe’)s!
3 =
3) S 1—(ze)*

with the conditions that

o =1, 2,... K when k is even
)] Ap—i=0a; i 2 1
=1, 2,... ; when k is odd

and that
®) 1+ax+....+az12*1'=0 has all its roots in |zl =>1.

And conversely.

Proof. By the hypothesis we have |ai.|l=1, and we can put
ap=1. Further

© o Oy = s oy (v=1, 2,. ... km)
Hence

ak,,.=1 m=2, 3,....) and ak_,—=E,-, ('I:=1, 2,....]6—1).
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Considering fu(x)=0, fa(x)=0,....successively, we have
fim@)=1+ax+... Yag_ @t akt a4, a2y L

VRl + @y g1 4 g
=(1+mz+.... +a;,_1x’°‘1)%kmr b
—X

Hence
0 l1+ax+... + gk l—akmt Y g g+ ... +ak_1x"'2+x"‘l)=0

has also all the rootson |z| =1. From (7)
1+ax+...+az_x*?!
5] phm+l — 1 k-1
® artax+ ... Fag_1rk-2+ogk1
A +ax)1+ax)...(14+a,_1x)
(a1+x)(a2 +x). . -(ak—l +x)

If any one of the @’s, say a, lie outside of the unit circle, then by

Rouché’s theorem (8) must have at least one root in the sufficiently

small neighbourhood of — : . If |al, lagl,....lop-1] =1, then the
1

right hand side of the equation (8) can not be equal to the left in

absolute value, unless |2 1=1. For m — o0 we have the theorem.

Remark.?  Putting P@)=1+awx+.... +ar 2%, (ar-s=0a5),
and remarking that P(x)+x*=fi(x)=0 has all its roots on |2 |=1,
we have

P(x) +w’°=xF<-—1—) +1.
x
Hence, if P(x)=0 has any root 8 such as [f#]=1, then we must have
p=1

By the continuity of roots the condition (5) can be expressed by the
following k inequalities

P1)=0, P =0,....PFE1H =0,

where § is a primitive root of p*=1.

1) For k=1 the above theorem was obtained by Jentzsch, Acta math. 41 (1918)
7.



