Endgültige Fundamentalsätze der Kugelkongruenzen-*174*. theorie im konformen Raume, II.1)

By Tsurusaburo Takasu. Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. Fujiwara, M.I.A., Nov. 2, 1928.)

- 3. Zwei natürliche Individualisierungsweisen von der instantanen Absoluten A und der instantanen Absolutpolare U.
- (i) Ich habe schon²⁾ die zwei Kugeln A und U innerhalb des linearen Kugelsystems $lx + m\overline{x}$ dadurch individualisiert, dass die beiden Zentralkugeln η und η in Bezug auf A invers werden:

$$(7) \begin{array}{c} A = (\mu \underline{\mathsf{r}} - \overline{\mu} \, \underline{\overline{\mathsf{r}}}) : 2 = (\underline{\mathsf{r}}' - \overline{\underline{\mathsf{r}}}') : 2, \quad \mu = k^{-1} \sqrt{H/H} = k^{-1} \sqrt{(\underline{\overline{\mathsf{r}}} \, \eta)_5/(\underline{\overline{\mathsf{r}}} \, \eta)_5}, \\ U = i(\mu \underline{\mathsf{r}} + \overline{\mu} \, \underline{\overline{\mathsf{r}}}) : 2 = i(\underline{\mathsf{r}}' + \overline{\underline{\mathsf{r}}}') : 2, \quad \overline{\mu} = k^{-1} \sqrt{H/H} = k^{-1} \sqrt{(\underline{\mathfrak{r}} \, \eta)_5/(\underline{\overline{\mathsf{r}}} \, \eta)_5}. \end{array}$$

Es ist sehr leicht zu zeigen, dass

- (8) $(U_7'')_5 = (\overline{U_7''})_5 = \varepsilon i k / \sqrt{H\overline{H}}, \quad (U_7')_5 = \varepsilon i,$ sodass $\eta', \overline{\eta'}$ bez. $\eta'', \overline{\eta''}$ in Bezug auf U invers werden.
- (ii) Individualisiert man nun innerhalb des Kugelbüschels lx + mx die
- Kugel A, sodass die Tangentialkugeln χ und $\overline{\chi}$ in Bezug auf A invers werden, so hat man
 - $\begin{array}{lll} \textbf{(9)} & \mathring{A} = \varepsilon (\overset{\sim}{\mu} \xi + \overset{\sim}{\mu} \overset{\sim}{\xi}) : 2 = \varepsilon (\overset{\circ}{\xi} + \overset{\checkmark}{\xi}) : 2, & \overset{\sim}{\mu} = k^{-1} \sqrt{\overset{\sim}{5}/5} = k^{-1} \overset{\sim}{5}/\sqrt{\overset{\sim}{5} \overset{\sim}{5}}, \\ \textbf{(10)} & \mathring{U} = i \varepsilon (\overset{\sim}{\mu} \xi \overset{\sim}{\mu} \overset{\sim}{\xi}) : 2 = i \varepsilon (\overset{\circ}{\xi} \overset{\sim}{\xi}) : 2, & \overset{\sim}{\mu} = k^{-1} \sqrt{\overset{\sim}{5}/5} = k^{-1} \overset{\sim}{5}/\sqrt{\overset{\sim}{5} \overset{\sim}{5}}. \end{array}$
- χ und χ berühren A.

Es ist leicht zu zeigen, dass

(11) $(\mathring{A}\chi')_5 = \varepsilon k^{\gamma} / \overline{\mathfrak{H}} = (\mathring{A}\chi')_5, \quad (\mathring{A}\chi'')_5 = \varepsilon k/\sqrt{\overline{\mathfrak{H}}} = (\mathring{A}\chi'')_5, \quad (\varepsilon = \pm 1),$ sodass χ' , $\overline{\chi}'$ bez. χ'' , $\overline{\chi}''$ in Bezug auf \mathring{A} invers werden.

Wir können nun beweisen³⁾:

- 1) Vgl. Teil I. Dieses Proc. S. 157.
- 2) Siehe Abschnitt II, S. 362, Fussnote 1), S. 157.
- 3) Nach der Formel (536)₁, S. 366, a.a.O. $\xi_{hk} = -\mathcal{G}_{hk}\xi + \frac{1}{2k^2}(\overline{D}_{hk}\xi + \overline{D}_{hk}\overline{\xi})$

$$\xi_{hk} = -\mathcal{G}_{hk}\xi + \frac{1}{2k^2}(\overline{D}_{hk}\xi + \overline{D}_{hk}\overline{\xi})$$

haben wir

 $\mathcal{G}^{hk\xi_{hk}/2+\xi=(\overline{\mathfrak{D}}\mathfrak{x}+\overline{\mathfrak{D}}\overline{\mathfrak{x}})/2k^2}$.

Aus (9) und (a) ergibt sich

$$\stackrel{\star}{A} = k(\xi + \mathcal{G}hk\xi_{hk}/2) : \sqrt{\overline{\mathfrak{F}}\overline{\mathfrak{F}}}.$$

Wegen $(\mathring{A}\mathring{A})_5=1$, erhält man $\sqrt[4]{\mathfrak{H}}= l\left[\mathscr{G}^{rs}\mathscr{G}^{pq}(\xi_{rs}\xi_{pq})/4-1\right]^{\frac{1}{2}}$, worans folgen (12) und (13). Die Formeln (12) und (13) versagen für die Zentralkugelkongruenz.

(12)
$$\check{A} = (\xi + \mathcal{G}^{rs}\xi_{rs}/2) : [\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{pq})_5/4 - 1]^{\frac{1}{2}},$$

(13)
$$\dot{U} = -\vec{\xi}^{pq} || \xi \xi_p \xi_q \mathring{A} || : 2 = -\vec{\xi}^{pq} \mathcal{G}^{\dot{r}s} || \xi \xi_p \xi_q \xi_{rs} ||
: 4 [\mathcal{G}^{rs} \mathcal{G}^{pq} (\xi_{rs} \xi_{pq})_5 / 4 - 1]^{\frac{1}{2}}.$$

4. Darstellung von \dot{x} und \dot{x} mittels ξ , ξ_h , ξ_{hk} allein. Aus (9), (10), (12) und (13) ergibt sich

(14)
$$\dot{\varepsilon_{\mathbf{x}}} = k(\mathring{A} - i\mathring{U}) = [\xi + \mathcal{G}^{rs}\xi_{rs}/2 + i\mathcal{G}^{pq}\mathcal{G}^{rs}] | \xi \xi_{p}\xi_{q}\xi_{rs} | | /4]$$

$$: [\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{rq})_{5}/4 - 1]^{\frac{1}{2}}.$$

(15)
$$\overset{\check{}}{\varepsilon y} = k(\mathring{A} + i\mathring{U}) = \left[\xi + \mathcal{G}^{rs}\xi_{rs}/2 - i\overset{\check{}}{\varsigma}^{pq}\mathcal{G}^{rs}\right] \left|\xi \xi_{p}\xi_{q}\xi_{rs}\right| / 4 \\
: \left[\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{pq})_{5}/4 - 1\right]^{\frac{1}{2}}.$$

5. Darstellung von \check{D}_{hk} , $\check{\overline{D}}_{hk}$, $\check{\vartheta}_{hk}$ und $\check{\vartheta}_{hk}$ mittels ξ , ξ_h , ξ_{hk} allein. Mit Rücksicht auf (14) und (15) haben wir

(16)
$$\varepsilon \overset{\triangleright}{D}_{hk} = \left[-\mathcal{G}_{hk} + \mathcal{G}^{rs}(\xi_{rs}\xi_{hk})_{5}/2 + i \overset{\triangleright}{G}^{rq}\mathcal{G}^{rs} \right] \xi \xi_{p}\xi_{q}\xi_{rs}\xi_{hk}/4 \\ : \left[\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{pq})_{5}/4 - 1 \right]^{\frac{1}{2}},$$

(17)
$$\varepsilon \overset{\checkmark}{D}_{hk} = \left[-\mathcal{G}_{hk} + \mathcal{G}^{rs}(\xi_{rs}\xi_{hk})_{5}/2 - i \overset{\checkmark}{\mathcal{G}}^{pq}\mathcal{G}^{rs} \right] \xi \xi_{p}\xi_{q}\xi_{rs}\xi_{hk}/4 \\ : \left[\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{nq})_{5}/4 - 1 \right]^{\frac{1}{2}}.$$

Nach (12) und (13) haben wir übrigens

(18)
$$\mathring{\vartheta}_{hk} = (\mathring{A}\xi_{hk})_5 = [-\mathcal{G}_{hk} + \mathcal{G}^{rs}(\xi_{rs}\xi_{hk})_5/2] : [\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{pq})_5/4 - 1]^{\frac{1}{2}},$$

$$(19) \quad \dot{\overline{\vartheta}}_{hk} = (\dot{U}\xi_{hk})_5 = [-\vec{\xi}^{pq}\mathcal{G}^{rs}||\xi\xi_p\xi_q\xi_{rs}\xi_{hk}||] : 4[\mathcal{G}^{rs}\mathcal{G}^{pq}(\xi_{rs}\xi_{pq})_5 - 1]^{\frac{1}{2}}.$$

6. Endgültige Formulierung der Fundamentalsätze der Kugelkongruenzentheorie im konformen Raume. Um aus den Fundamentalsätzen I-IV ihre endgültigen Formulierungen zu erzielen, können wir jede Normierungsweisen (i), (ii) für $\mathfrak x$ und $\overline{\mathfrak x}$ sowie jede Individualisierungsweisen (i), (ii) für A und U aufnehmen. Aber um die Vorteile von Artt. 4 und 5 herrschen zu lassen wollen wir hier ausschliesslich die Normierungsweise (i), (2)₁ für $\mathfrak x$ und $\overline{\mathfrak x}$ sowie die Individualisierungsweise (ii) für $\mathring A$ und $\mathring U$ aufnehmen. So gelangen wir den endgültigen Formulierungen der Fundamentalsätze der Kugelkongruenzentheorie im konformen Raume:

Fundamentalsatz I'. Wenn zwei quadratische Formen $\mathcal{G}_{hk}(u^1, u^2)du^hdu^k$ und $\check{D}_{hk}(u^1, u^2)du^hdu^k$ für zwei Kugelkongruenzen gebildet werden, so ist es für die Kongruenz (unter konformer Gruppe) der beiden Kugelkongruenzen notwendig und hinreichend, dass die zwei Paare dieser Fundamentalformen der Bedingung

T. TAKASU. [V
$$\xi^{pq} \check{Y}_{pq} \neq 0, \left| \xi^{rs} (\check{Y}_{rsq} - \check{Y}_{rs} \check{Z}_{q}) \right| \xi^{rs} (\check{Y}_{r} \check{Z}_{s} - \check{Z}_{rsq}) = 0$$

$$\xi^{rs} (\check{Y}_{rs} \check{Z}_{q} + (\check{Y}_{r} \check{Z}_{s})_{q} - \check{Z}_{rsq}) \quad \xi^{rs} (\check{Y}_{r} \check{Z}_{s} - \check{Z}_{rs}) \right| = 0$$

genügen¹⁾ und dass diese zwei Paare mit einander kovariant sind. Der Fall $\mathcal{G} = G^{-1}D^2 = 0$ von Krümmungskugelkongruenzen ist ausgeschlossen²).

Dabei und im folgenden sollen die mit v bezeichneten Buchstaben den obigen Vektoren \dot{x} , \dot{x} , \dot{x} , \dot{X} , \dot{U} entsprechen.

Fundamentalsatz II'. Wenn zwei quadratische Formen $\check{G}_{hk}(u^1,u^2)du^hdu^k$ und $\check{D}_{hk}(u^1, u^2)du^hdu^k$ für zwei Kugelkongruenzen ($\check{G} \neq 0, \check{D} \neq 0$) gebildet werden, so ist es für die Kongruenz (unter konformer Gruppe) der beiden Kugelkongruenzen notwendig und hinreichend, dass die zwei Paare dieser Fundamentalformen der Bedingung³⁾

$$\stackrel{\check{E}^{rq}\check{U}_{pq}}{=} = 0, \quad \left| \stackrel{\check{E}^{rs}(\check{U}_{rsq} - \check{U}_{rs}\check{V}_q)}{\check{E}^{rs}(\check{U}_{rs}\check{V}_q + (\check{U}_r\check{V}_s)_q - \check{V}_{rsq})} \right| \stackrel{\check{E}^{rs}\check{U}_{rs}}{=} = 0$$

genügen und dass diese zwei Paare mit einander kovariant sind.

Fundamentalsatz III'. Wenn zwei quadratische Formen $\mathcal{G}_{hk}(u^1, u^2)du^kdu^k$ und $D_{hk}(u^1, u^2)du^hdu^k$ für zwei Kugelkongruenzen gebildet werden, so ist es für die Kongruenz (unter konformer Gruppe) der beiden Kugelkongruenzen notwendig und hinreichend, dass die zwei Paare dieser Fundamentalformen der Bedingung⁴⁾

$$\begin{aligned}
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} \neq 0, & & & & & & & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs} & & & & & & & & \\
&\overset{\epsilon}{\lesssim} \overset{rs}{\mathring{R}}_{rs$$

genügen und dass diese zwei Paare mit einander kovariant sind. Der Fall von Krümmungskugelkongruenzen $\mathcal{G} = D = \overline{D} = 0$ ist ausgeschlossen⁵.

Wenn $\check{D}_{hk}du^kdu^k$ gegeben ist, so kann man $\overline{\check{D}}_{hk}du^kdu^k$ entweder nach der Formel (549)₂ (Abschnitt II, a.a.O., S. 385) oder nach (17) ohne weiteres gewinnen. So vergleicht man ($D_{hk}du^hdu^k$, $D_{hk}du^hdu^k$) (als ganzes) für zwei gegebene Kugelkongruenzen um ihre ineinander Transformierbarkeit zu entscheiden.

¹⁾ Abschnitt II, a.a.O., S. 372, Formeln (555)₁, (555)₂.

²⁾ Diesen Ausnahmefall habe ich in einer getrennten Arbeit behandelt: T. Takasu, Zur konformen Flächentheorie mit Krümmungskugeln als Elementen. Proc. Imper. Acad. of Japan, 4 (1928).

³⁾ Abschnitt II, a.a.O., S. 379, $(573)_1$ und (574). Dem Ausnahmefalle $\dot{G}=0$ entspricht keine reelle Figur. Siehe die letzte Fussnote!

⁴⁾ Abschnitt II, a.a.O., S. 886, (592)₁ und (593).

⁵⁾ Wegen dieses Ausnahmefalls siehe die Fussnote zum Fundamentalsatze I'.

Wenn D_{hk} duhduk gegeben ist, so kann man \overline{D}_{hk} duhduk entweder nach der Fommel (587)₂ (Abschnitt II, a.a.O., S. 385) oder nach (17) ohne weiteres gewinnen. So wird die Behandlung für z und z symmetrisch.

Fundamentalsatz IV'. Wenn zwei quadratische Formen $\check{G}_{hk}(u^1, u^2)du^hdu^k$ und $\check{D}_{hk}(u^1, u^2)du^hdu^k$ für zwei Kugelkongruenzen ($\bar{D}^2 = \mathcal{G} \subseteq D^2 = 0$) gebildet werden, so ist es für die Kongruenz (unter konformer Gruppe) der beiden Kugelkongruenzen notwendig und hinreichend, dass die zwei Paare dieser Fundamentalformen der Bedingung¹⁾.

$$\begin{bmatrix} \check{E}_{pq} \check{\mathcal{U}}_{pq} + 0, & \check{E}^{rs} (\check{\mathcal{U}}_{rsq} - \check{\mathcal{U}}_{rs} \check{\mathcal{V}}_{q}) & \check{E}^{rs} \check{\mathcal{V}}_{rs} \\ & \check{E}^{rs} (\check{\mathcal{U}}_{rs} \check{\mathcal{V}}_{q} + (\check{\mathcal{U}}_{r} \check{\mathcal{V}}_{s})_{q} - \check{\mathcal{V}}_{rsq}) & \check{E}^{rs} (\check{\mathcal{U}}_{r} \check{\mathcal{V}}_{s} - \check{\mathcal{V}}_{rs}) \end{bmatrix} = 0$$

genügen und dass diese zwei Paare mit einander kovariant sind?).

Fundamentalsatz V'. Wenn drei quadratische Formen $\mathcal{G}_{hk}(u^1, u^2)du^hdu^k$, $\dot{\vartheta}_{hk}(u^1, u^2)du^hdu^k$ $\dot{\vartheta}_{hk}(u^1, u^2)du^hdu^k$ für zwei Kugelkongruenzen ($\mathcal{G} + 0$, $\dot{\vartheta} + 0$) gebildet werden, so ist es für die Kongruenz (unter konformer Gruppe) der beiden Kugelkongruenzen notwendig und hinreichend, dass die zwei Paare dieser Fundamentalformen der Bedingung³)

$$\begin{split} & \hat{\Re}^{\overset{\mathcal{G}}{\mathcal{G}}} = 1 - \frac{1}{2} \vec{\varsigma}^{th} \vec{\varsigma}^{kl} (\check{\vartheta}_{hk} \check{\vartheta}_{lt} + \check{\overline{\vartheta}}_{hk} \, \check{\overline{\vartheta}}_{lt}) \!\!\equiv \!\! 1 + \frac{\check{\vartheta}}{\mathscr{G}} + \frac{\check{\overline{\vartheta}}}{\mathscr{G}} \,, \\ & \vec{\varsigma}^{kl} \check{\overline{\jmath}}^{hp} \check{\vartheta}_{hkl} = \vec{\varsigma}^{kl} \check{\vartheta}^{hp} \check{\overline{\vartheta}}_{hkl} \,, \\ & \vec{\varsigma}^{sl} (\check{\vartheta}^{hk} \check{\overline{\vartheta}}_{hslk} + \check{\vartheta}_{k} {}^{hk} \check{\overline{\vartheta}}_{hsl}) = \vec{\varsigma}^{hk} \check{\mathscr{G}}^{sp} \check{\vartheta}_{sk} \check{\overline{\vartheta}}_{hp} \end{split}$$

genügen und dass diese zwei Paare mit einander kovariant sind. Den ausgeschlossenen Fall $\mathcal{G} = G^{-1}D^2 = 0$ von Krümmungskugelkongruenzen habe ich schon anderswo behandelt⁴⁾

N.B. Diese Formulierungen (I'-V') versagen für die Zentralkugelkongruenzen $\mathfrak{H}=0$. Aber, den Fundamentalsatz der Theorie von Zentralkugelkongruenzen habe ich schon fertig gemacht⁵.

Als Folge dieser Abhandlung werden die ganzen Ergebnisse vom Abschnitt II⁶ konkreter und lebhafter.

- 1) Abschnitt II, a.a.O., S. 392, (612)₁, (612)₂.
- 2) Dem Falle G = 0 entspricht keine reelle Figur. Siehe die letzte Fussnote!
- 3) Abschnitt II, a.a.O., S. 394, (616), (628), (629).
- 4) A.a.O.
- 5) Abschnitt II, a.a.O., S. 565.
- 6) Fussnote 1), S. 157.