100. The Foundation of the Theory of Displacements.

By Akitsugu KAWAGUCHI.

Mathematical Institute, Hokkaido Imperial University, Sapporo. (Comm. by M. FUJIWARA, M.I.A., Oct. 12, 1933.)

In a previous paper¹⁾ I have stated the most general displacement in a generalized manifold of finite dimensions, which contains all kinds of displacements as its special ones. Considering a new kind of space²⁾, I shall set out here the foundation of the theory of displacements from the stand-point of the theory of abstract spaces and define an abstract displacement, from which not only all kinds of displacements in a manifold of finite dimensions, but also those in the Hilbertian or the function manifold, are deduced by specialization.

1. We shall take an underlying manifold M and a series of finite or enumerably infinite number of manifolds³⁰ having the sense of "neighbourhood": $M^{(1)}, M^{(2)}, \ldots$, and denote any one of their elements by $a, a^{(1)}, a^{(2)}, \ldots$ respectively. We associate to every set of the elements $a^* = (a, a^{(1)}, a^{(2)}, \ldots)$, consisting of every single element of the above manifolds, one of the mutually isomorphic manifolds \overline{M} , which are the spaces (K) and are in general independent of the manifolds M and $M^{(i)}$. The totality of all the sets a^* forms evidently a manifold M^* having the sense of "neighbourhood."

2. The displacements $\overline{M}(a^*) \rightarrow \overline{M}(b^*)$ are characterized by the following three axioms⁴⁾ for the one-to-one and bicontinuous⁵⁾ correspondences, in which every element of $\overline{M}(a^*)$ associated to a set a^* corresponds to one of that $\overline{M}(b^*)$ associated to a set b^* .

¹⁾ A. Kawaguchi, Theory of connections in the generalized Finsler manifold, II, Proc. 8 (1932), 340-343.

²⁾ I name this space the space (K), which is equal to the general vector space by S. Banach, where the idea "neighbourhood" stands for that "metrics," that is, a linear space having the sense of "neighbourhood." This space is therefore isomorphic to an abstract continuous group. S. Banach, Théorie des opérations linéaires, Warszawa 1932.

³⁾ The "manifold" means in this paper the space (L) in Fréchet's sense. M. Fréchet, Les espaces abstraits, Paris, 1926.

⁴⁾ These axioms were first introduced by Veblen and Whitehead into a manifold of finite dimensions. O. Veblen-J. H. Whitehead, The foundations of differential geometry, 1932.

⁵⁾ Continuity of a correspondence means that by the correspondence every open set corresponds to another open set.

(1) For any two sets a^* and b^* there exists at least one of the diplacements $\overline{M}(a^*) \rightarrow \overline{M}(b^*)$.

(2) By a combination of two displacements $\overline{M}(a^*) \rightarrow \overline{M}(b^*)$ and $\overline{M}(b^*) \rightarrow \overline{M}(c^*)$ follows always a displacement $\overline{M}(a^*) \rightarrow \overline{M}(c^*)$.

(3) The inverse correspondence of a displacement $\overline{M}(a^*) \rightarrow \overline{M}(b^*)$ is also a displacement $\overline{M}(b^*) \rightarrow \overline{M}(a^*)$.

3. The totality of the displacements forms a pseudo-group. The number of the displacements from $\overline{M}(a^*)$ to $\overline{M}(b^*)$ is not necessarily one. Moreover there may exist many displacements which carry $\overline{M}(a^*)$ into itself. These displacements form a sub-group G of the group of self-correspondences. G is called the *holonomic group* at the set a^* and we can show that the holonomic groups are simply isomorphic to one another. When the holonomic group contains only one element, we say the displacement is holonomic. The manifold M with a holonomic displacement is called a *flat manifold*; otherwise it is called a *curved manifold*.¹⁾

We can conclude from the axioms that between the set of the displacements from $\overline{M}(a^*)$ to $\overline{M}(b^*)$ and the holonomic group there exists a one-to-one correspondence. Therefore the manifold is flat, when there exists only one displacement from $\overline{M}(a^*)$ to $\overline{M}(b^*)$; otherwise it is curved.

4. Now from our standpoint the geometry can be interpretated as the theory of manifolds M, $M^{(i)}$, \overline{M} , and of the displacements, that is to say, the manifolds and the displacements are the foundation of the geometry and by these the geometries are characterized.

Let M be coincide with M and take the identical self-correspondence as the displacement, then M is a flat manifold. The space in Klein's sense²⁾ will be deduced from this manifold by associating a group of self-correspondences. The space in Cartan-Schouten's sense³⁾ is also clearly a special one of our general case.

352

¹⁾ This definition for flatness can be generalized to an abstract set. Let m be an abstract set and an arbitrary set \overline{m} be associated to every element of m. The displacements are then defined from the one-to-one correspondences between the sets \overline{m} associated to any two elements of m by three axioms analogous to the above ones. If the holonomic group of displacements contains only one element, then the set m is flat.

²⁾ F. Klein, Erlanger Programm, Gesammelte Math. Abh. I, Berlin, 1921.

³⁾ J. A. Schouten, Erlanger Programm und Übertragungslehre. Neue Gesichtspunkte zur Grundlegung der Geometrie, Rendiconti del Circolo Matematico di Palermo, 50 (1926), 142-169.

5. We represent a displacement from $M(a^*)$ to $\overline{M}(b^*)$ by $D_{a^*b^*}$ and the correspondence between elements in this displacement by the following expression:

(1)
$$\bar{a}_{b*} = \bar{a}_{b*}(\bar{a}_{a*}, D_{a*b*})$$
,

which is a one-valued set-function, continuous with respect to \overline{a}_{a*} in the manifold $\overline{M}(a^*)$. From the axioms it follows

(2)
$$\overline{a}_{c*}(\overline{a}_{b*}(\overline{a}_{a*}, D_{a*b*}), D_{b*c*}) = \overline{a}_{c*}(\overline{a}_{a*}, D_{a*c*}),$$

when the displacement D_{a*c*} follows from combination of the two displacements D_{a*b*} and D_{b*c*} ;

(3)
$$\overline{a}_{a*} = \overline{a}_{a*}(\overline{a}_{b*}(\overline{a}_{a*}, D_{a*b*}), D_{b*a*}),$$

when $D_{b^*a^*}$ is the inverse of the displacement $D_{a^*b^*}$. We say two elements \overline{a}_{a^*} and \overline{a}_{b^*} related in (1) are *equivalent* to each other.

6. With respect to an underlying isomorphism between any two manifolds \overline{M} , let us represent the corresponding elements by the same letters, which are called *equal elements*. The underlying isomorphism may be defined arbitrarily but uniquely. Let $\overline{a}_{a*}(a^*)$ be an element in \overline{M}_{a*} determined uniquely for every a^* , and continuous with respect to a^* , when we consider instead of $\overline{a}_{a*}(a^*)$ their equal elements in some manifold \overline{M} . The change in $\overline{a}_{a*}(a^*)$ due to a change from a^* to b^* ,

$$(4) \qquad \qquad \Delta \overline{a}_{a*b*} = \overline{a}_{b*} - \overline{a}_{a*}$$

determines also an element of \overline{M} , and also the change due to a displacement from $\overline{M}(a^*)$ to $\overline{M}(b^*)$

(5)
$$-\Gamma(\overline{a}_{a*b*}) = \overline{a}_{b*}(\overline{a}_{a*}, D_{a*b*}) - \overline{a}_{a*}$$

The difference

(6)
$$\nabla \overline{a}_{a*b*} = \Delta \overline{a}_{a*b*} + \Gamma(\overline{a}_{a*b*})$$

for any set b^* contained in a neighbourhood of the set a^* is called the *covariant change* of $\overline{a}_{a^*}(a^*)$ at the set a^* . The covariant change $\nabla \overline{a}_{a^*b^*}$ determines an element in the manifold \overline{M}_{b^*} ,

7. Let us consider a one-to-one and continuous transformation in any manifold \overline{M}_{a*}

(7)
$$'\bar{a}_{a*} = f(\bar{a}_{a*}, a^*)$$
,

where $f(\overline{a}_{a^*}, a^*)$ is a continuous set-function with respect to \overline{a}_{a^*} and a^* . By this transformation, both the changes $\triangle \overline{a}_{a^*b^*}$ and $I'(\overline{a}_{a^*b^*})$ depend upon the variation of $f(\overline{a}_{a^*}, a^*)$ due to the change from a^* to b^* , but that of the covariant change does not and

(8)
$$\nabla \overline{a}_{a*b*} = \varphi(\nabla \overline{a}_{a*b*}, \overline{a}_{b*}(\overline{a}_{a*}, D_{a*b*}), b^*),$$

A. KAWAGUCHI.

where (9)

$$\varphi(\nabla \overline{a}_{a*b*}, \overline{a}_{b*}(\overline{a}_{a*}, D_{a*b*}), b^*) = f(\overline{a}_{b*}, b^*) - f(\overline{a}_{b*}(\overline{a}_{a*}, D_{a*b*}), b^*),$$

so that

$$\begin{aligned} f(\bar{a}_{b^*}, b^*) =& f(\bar{a}_{b^*}(\bar{a}_{a^*}, D_{a^*b^*}) + \nabla \bar{a}_{a^*b^*}, b^*) \\ =& f(\bar{a}_{b^*}(\bar{a}_{a^*}, D_{a^*b^*}), b^*) + \varphi(\nabla \bar{a}_{a^*b^*}, \ \bar{a}_{b^*}(\bar{a}_{a^*}D_{a^*b^*}), b^*) \,. \end{aligned}$$

When $f(\overline{a}_{a*}, a^*)$ is linear with respect to \overline{a}_{a*} , namely

$$f(\overline{a}_{a*} + \overline{b}_{a*}, a^*) = f(\overline{a}_{a*}, a^*) + f(\overline{b}_{a*}, a^*)$$
,

then the covariant change $\nabla \overline{a}_{a^*b^*}$ is transformed by this transformation in such a manner as \overline{a}_{a^*} . This result corresponds to the well-known fact in the ordinary tensor calculus, that the covariant differential of a vector is also a vector.

8. For a convergent sequence $b^{*(1)}$, $b^{*(2)}$, to the set a^* , let a sequence of displacement $D_{a*b^{*(1)}}$, $D_{a*b^{*(2)}}$, tend to the identical displacement $D_{a*a*}=1^{1}$, then

$$\lim_{r\to\infty} \{ \overline{a}_{b*}(r)(\overline{a}_{a*}, D_{a*b*}(r)) - \overline{a}_{a*}(a^*) \} = 0.$$

In this case we can write (6) in a form of differentials

(10)
$$\delta \overline{a}_{a*} = d\overline{a}_{a*} + \Gamma(\overline{a}_{a*}),$$

which is called the *covariant differential* of $\overline{a}_{a*}(a^*)$ with respect to the above sequence of displacements.

9. We assume that the displacement $D_{a^*b^*}$ is determined uniquely by a curve $C_{a^*b^*}$ joining a^* and b^{*2} and that the manifold M^* is also a space (K). Then

(11)
$$-\Gamma(\bar{a}_{a*b*}) = \bar{a}_{b*}(\bar{a}_{a*}, C_{a*b*}) - \bar{a}_{a*}$$
$$= -\Gamma(\bar{a}_{a*,a*}, da^*, da^*, d^2a^*, \dots)$$

for b^* approaching to a^{*3} on the curve C_{a*b*} .

When every set on the curve C_{a*b*} is represented by a numerical value of a parameter t, then we have in general

(12)
$$\delta \overline{a}_{a*} = d\overline{a}_{a*} + \Gamma \left(\overline{a}_{a*}, a^*, \frac{da^*}{dt}, \frac{d^2a^*}{dt^2}, \dots \right) dt.$$

1) This means that any neighbourhood of every element \overline{a}_{a*} in the manifold \overline{M}_{a*} contains the equal element of $\overline{a}_{b*}(r)$ (\overline{a}_{a*} , $D_{a*b*}(r)$) for all r greater than a fixed integer r_0 which depends only upon the neighbourhood.

354

[Vol. 9,

²⁾ A curve joining two sets a^* and b^* in the manifold M^* is a connected continuum containing these sets and having no connected subcontinuum which contains a^* as well as b^* .

³⁾ When b^*-a^* for a fixed a^* tends to zero-element, we say b^* approaches to a^* .