3. A Theorem on Cesàro Summability.

By Tatsuo Takahashi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. Fujiwara, m.I.A., Jan. 12, 1934.)

Recently Prof. Y. Okada proved the theorem:
Let the series ${ }^{1} \sum_{n=0}^{\infty} a_{n}$ be summable ($\left.C, a\right)(a>-1)$, with sum s. If, for any given non-negative k,

$$
\begin{equation*}
\underline{\lim }\left(C_{n}^{(k)}-C_{m}^{(k)}\right) \geqq 0 \quad\left(\frac{n}{m} \rightarrow 1, \quad n>m \rightarrow+\infty\right) \tag{1}
\end{equation*}
$$

holds, then the series is summable (C, k) with sum s, where

$$
C_{n}^{(k)}=\frac{S_{n}^{(k)}}{\binom{(k)}{k}},
$$

and

$$
S_{n}^{(k)}=\sum_{v=0}^{n}(\underset{k}{n-\nu-k}) a_{v} .
$$

In the present paper, it is aimed to deduce a more general theorem, from Schmidt's theorem which runs as follows:

Let the series be summable by Abel's method with sum s. If

$$
\underline{\lim }\left(s_{n}-s_{m}\right) \geqq 0 \quad\left(\frac{n}{m} \rightarrow 1, \quad n>m \rightarrow+\infty\right)
$$

holds, then the series is convergent with sum s, where

$$
s_{n}=\sum_{\nu=0}^{n} a_{\nu} .
$$

Theorem. Let the series $\sum a_{n}$ be summable by Abel's method with sum s. If for any given non-negative k, (1) holds, then the series is summable (C, k) with sum s.

Without loss of generality, we can suppose that $s=0$. Consider the series

$$
\sum_{v=0}^{n}\left(C_{v}^{(k)}-C_{v-1}^{(k)}\right), \quad\left(C_{-1}^{(k)}=0\right),
$$

then

$$
\sum_{v=0}^{n}\left(C_{v}^{(k)}-C_{v-1}^{(L)}\right)=C_{n}^{(k)} .
$$

1) We consider here only real series.
2) Y. Okada: On the converse of the consistency of Cesaro's summability, Tohoku Mathematical Journal, 38 (1933).

We can prove that, if
then

$$
\begin{aligned}
& \sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow 0, \quad \text { as } x \rightarrow 1-0 \\
& \sum_{n=0}^{\infty}\left(C_{n}^{(k)}-C_{n-1}^{(k)}\right) x^{n} \rightarrow 0, \quad \text { as } \quad x \rightarrow 1-0
\end{aligned}
$$

For, by the Schmidt's theorem,

$$
\sum_{n=0}^{\infty}\left(C_{n}^{(k)}-C_{n-1}^{(k)}\right)
$$

is convergent, which means the (C, k) summability of $\sum_{n=0}^{\infty} a_{n}$.
Now

$$
\sum_{n=0}^{\infty}\left(C_{n}^{(k)}-C_{n-1}^{(k)}\right) x^{n}=(1-x) \sum_{n=0}^{\infty} C_{n}^{(k)} x^{n}
$$

If we put

$$
\begin{aligned}
P(x) & =(1-x) \Gamma(1+k) \sum_{n=0}^{\infty} \frac{S_{n}^{(k)}}{(n+1)(n+2) \cdots \cdots(n+k)} x^{n} \\
& =(1-x) \Gamma(1+k)\left(\int_{0}^{x} d x\right)^{k} \frac{f(x)}{(1-x)^{k+1}}, \\
& f(x)=\sum_{n=0}^{\infty} a_{n} x^{n},
\end{aligned}
$$

where
it suffices to prove that

$$
\lim _{x=1-0} P(x)=0
$$

For any $\varepsilon(>0)$, there is a δ such that

$$
|f(x)|<\varepsilon, \quad \text { for } \quad 1-\delta<x<1
$$

and there is an M such that

$$
\begin{aligned}
& \text { We have }|f(x)|<M, \quad \text { for } 0 \leqq x<1 \\
& \begin{aligned}
|P(x)| & \leqq(1-x) \Gamma(1+k)\left(\int_{0}^{x} d x\right)^{k} \frac{|f(x)|}{(1-x)^{k+1}} \\
& =(1-x) \Gamma(1+k)\left(\int_{0}^{x} d x\right)^{k-1}\left(\int_{\theta}^{1-\delta} \frac{|f(x)|}{(1-x)^{k+1}} d x+\int_{1-\delta}^{x} \frac{|f(x)|}{(1-x)^{k+1}} d x\right) \\
& \leqq(1-x) \Gamma(1+k) \frac{M}{\delta^{k}}+\varepsilon(1-x) \Gamma(1+k)\left(\int_{0}^{x} d x\right)^{k} \frac{1}{(1-x)^{k+1}} .
\end{aligned}
\end{aligned}
$$

Letting $x \rightarrow 1$, we have

$$
\lim _{x=1-0}|P(x)| \leqq \varepsilon
$$

As ε is arbitrary, we have

$$
\lim _{x=1-0} P(x)=0
$$

Thus the theorem is proved.

