39. A New Proof of the Andersen's Theorem.

By Shin-ichi Izumi.
Mathematical Institute, Tohoku Imperial University, Sendai.
(Comm. by M. Fujiwara, m.I.A., Mar. 12, 1934.)

1. Let

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} \tag{1}
\end{equation*}
$$

be the given series. We put

$$
\begin{aligned}
& A_{n}^{(n)}=\binom{m+n}{n}, \\
& S_{n}^{(r)}=\sum_{v=0}^{n} A_{n-v}^{(r-1)} s_{v},
\end{aligned}
$$

where $s_{v}=a_{0}+a_{1}+\cdots \cdots+a_{v}$.
If the limit of

$$
\begin{equation*}
\frac{\boldsymbol{S}_{n}^{(r)}}{A_{n}^{(r)}} \tag{2}
\end{equation*}
$$

exists and $=s$, then (1) is said to be (C, r-summable to sum s, and we write $\sum_{n=0}^{\infty} a_{n}=s(C, r)$. If (2) is bounded, then (1) is said to be (C, r)-bounded, and we write $\sum_{n=0}^{\infty} a_{n}=o(1)(C, r)$.

The object of this paper is to prove the following theorems.
Theorem 1. Let $\sigma>\rho>-1$. If

$$
\sum_{n=0}^{\infty} a_{n}=O(1)(C, \rho)
$$

and

$$
\sum_{n=0}^{\infty} a_{n}=s(C, \sigma),
$$

then $\sum_{n=0}^{\infty} a_{n}=s(C, \tau)$ for any $\tau>\rho$.
Theorem 2. Let $\sigma>\rho>-1$. If

$$
\left|S_{n}^{(\rho)}\right|<A_{n}^{(\rho)}
$$

and

$$
\begin{equation*}
\left|S_{n}^{(0)}\right|<A_{n}^{(O)}, \tag{3}
\end{equation*}
$$

then $\quad\left|S_{n}^{(\tau)}\right|<\left(2+\frac{\Gamma(\tau-\rho+1) \Gamma(\sigma-\tau+1)}{\Gamma(\sigma-\rho+1)}+o(1)\right) A_{n}^{(\tau)}$
for any $\tau>\rho$.
These theorems are due to Andersen. ${ }^{1)}$ The constant in (3) seems to be new.

1) Andersen: Studier over Cesàro Summabilitetsmetode, 1921. Cf. Zygmund, Math. Zeits., 25 (1926).

In the following, we will prove Theorem 2. Simply modifying the proof, we get the proof of Theorem 1.
2. In order to prove Theorem 2, we transform it in a convenable form.

We put $\quad \Delta_{*}^{\alpha} v_{n}=\sum_{\nu=0}^{n} A_{\nu}^{(-\alpha-1)} v_{n-\nu}$.
Then $\Delta_{*}^{r}\left(\Delta_{*}^{s} v_{n}\right)=\Delta_{*}^{r+s} v_{n}$ for any real r and s.
If we put $\quad \alpha=\tau-\rho, \quad \beta=\sigma-\tau$
and

$$
S_{n}^{(\tau)}=v_{n}
$$

then

$$
\Delta_{*}^{\alpha} v_{n}=S_{n}^{(\rho)}, \quad \Delta_{*}^{-\beta} v_{n}=S_{n}^{(\sigma)} .
$$

Therefore, Theorem 2 becomes
Theorem 3. Let $\alpha>0$ and $\beta>0$. If

$$
\begin{equation*}
\left|\Delta_{*}^{\alpha} v_{n}\right|<A_{n}^{(\rho)} \tag{4}
\end{equation*}
$$

and $\left|\Delta_{*}^{-\beta} v_{n}\right|<A_{n}^{(\sigma)}$,
then $\quad\left|v_{n}\right|<\left(2+\frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+1)}+o(1)\right) A_{n}^{(\tau)}$.
3. We will now prove Theorem 3.

We have

$$
\begin{aligned}
A_{n}^{(\beta)} v_{n} & =\sum_{\nu=0}^{n} A_{\nu}^{(\beta-1)} v_{n} \\
& =\sum_{\nu=1}^{n} A_{\nu}^{(\beta-1)}\left(v_{n}-v_{n-\nu}\right)+\sum_{\nu=0}^{n} A_{v}^{(\beta-1)} v_{n-\nu} \\
& =\sum_{\nu=1}^{n} A_{\nu}^{(\beta-1)} \sum_{\nu=0}^{\nu-1} \Delta_{*} v_{n-\mu}+\sum_{\nu=0}^{n} A_{v}^{(\beta-1)} v_{n-\nu} \\
& =\sum_{1}+\sum_{2}, \quad \text { say. } \\
\sum_{1} & =\sum_{\nu=0}^{n-1}\left(A_{n}^{(\beta)}-A_{\nu}^{(\beta)}\right) \Delta_{*} v_{n-\nu} \\
& =\sum_{\nu=0}^{n}\left(A_{n}^{(\beta)}-A_{\nu}^{(\beta)}\right) \Delta_{*}^{-\alpha+1}\left(\Delta_{*}^{\alpha} v_{n-\nu}\right) \\
& =\sum_{\nu=0}^{n}\left(A_{n}^{(\beta)}-A_{v}^{(\beta)}\right) \sum_{\nu=0}^{n-\nu} A_{\mu}^{(\alpha-2)} \Delta_{*}^{\alpha} v_{n-\nu} \\
& =\sum_{\nu=0}^{n}\left(A_{n}^{(\beta)} A_{\nu}^{(\alpha-1)}-A_{\nu}^{(\alpha+\beta-1)}\right) \Delta_{*}^{\alpha} v_{n-\nu} . \\
\sum_{2} & =\sum_{\nu=0}^{n} A_{v}^{(\beta-1)} \Delta_{*}^{\beta}\left(d_{*}^{-\beta} v_{n-\nu}\right) \\
& =\sum_{\nu=0}^{n} A_{v}^{(\beta-1)} \sum_{\nu=0}^{n-\nu} A_{\mu}^{(-\beta-1)} \Delta_{*}^{-\beta} v_{n-\nu-\mu}=\Delta_{*}^{-\beta} v_{n} .
\end{aligned}
$$

By (4),

$$
\begin{aligned}
\left|\sum_{1}\right| & \leqq A_{n}^{(\rho)} \sum_{v=0}^{n}\left(A_{n}^{(\beta)} A_{v}^{(\alpha-1)}+A_{\nu}^{(\alpha+\beta-1)}\right) \\
& =A_{n}^{(\rho)}\left(A_{n}^{(\beta)} A_{n}^{(\alpha)}+A_{n}^{(\alpha+\beta)}\right)
\end{aligned}
$$

By (5), $\quad\left|\sum_{2}\right|<A_{n}^{(\sigma)}$.
Thus the theorem is proved.
4. We can prove the following theorem.

Theorem 4. Let $\sigma>\rho>-1$. If
and

$$
S_{n}^{(\rho)}<A_{n}^{(\rho)}
$$

and $\quad S_{n}^{(o)}<A_{n}^{(o)}$,
then $\quad S_{n}^{(\tau)}<\left(2+\frac{\Gamma(\tau-\rho+1) \Gamma(\sigma-\tau+1)}{\Gamma(\sigma-\rho+1)}+o(1)\right) A_{n}^{(\tau)}$
for any $\tau>\rho$.

