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37. The Foundation of the Theory of Displacements, IlL

(Application to a manifold of matrices.)

By Akitsugu KAWAUCHL
Mathematical Institute, Hokkaido Imperial University, Sapporo.

(Comm. by M. FUJWARA, M.LA., Feb. 12, 1934.)

Three kinds of displacements for a manifold of matrices are con-
sidered in this paper from the standpoint of the general theory set out
in my previous paper (F.D.I.) and also from that of its application to
a manifold with a linear connection.

1. Let us consider a manifold of finite dimensions M with a
coordinate system (= 1, 2, ) and associate a manifold of
matrices to its each point, where under the underlying isomorphism
between any two manifolds M in 6 (F.D.I.) the corresponding matrices
have corresponding elements of the same values. Then (10) in F.D.I.
becomes

(1) A=dA+ r(A)
for a matrix A in M determined uniquely for every point of M, where
F(A) is a matrix depending on x and the differential dA is a matrix,
whose elements are differentials of that of A. Our object is not to
consider such a general displacement, but a special one such that

(2) A dA+ FA +AF" ,*)
where F and F’ are matriees independent of A. This displaeemen is
elearly linear and has many interesting properties, as we see in the
following. When F and F’ are linear forms with respect to dx and
have sueh forms that F= F,(x)dx, F’= F()d#, then it follows from (2)

(3) A OA + 1,A+AI.

2. For the eovariant derivatives of the inverse matrix A-* of A
it seems to be most natural to define them in the same manner as

1) We may also define such a differentiation, that 7aio’=daij+ E r.ak where
k.t

A=((aij)). A special case of this connection has been studied by S. Hokari- ber die
Bivektoriibertragung, Journal of the Faculty of Science, Hokkaido Imperial University,
Series I, 2 (1934), 103-117.
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those of A, as A- is also a matrix with the same property as A.
Neverthless we may define them independently from (3)

(4) ,A- A-1 (-) -)

+FA-+A-F;
whieh is more general than the previous one. We look upon A and
A-x as not of the same quality, and put a matrix into one of two
categories K, K- according as it is considered as A or A-. This
concept is similar to that of orientation. From this standpoint we
consider one more category K/1, and define for any A/1 belonging to
this category

OA+X (+) (+)

(5) ,A+x--+ F,A+1+A+II,

where A+IA-I=U, U being the unit matrix, and more generally
A+XB-x=C.D

3. From A+xB---C, we have
(6) C=(A+IB-1)=(A+I)B-I+A+*(B-*)

(+) (-) (+) (-)

+ A+X(F+ F)B-1+ (F,- I’)A+*B-x +A+IB-*(I- F).
As the product matrix C of two matrices A, B, belonging to K,
belongs also to K, we soon obtain from (3)

(7) C=(,A)B+A(,B)-AAaB
where A,=F+ F. For the unit matrix U (6) and (7) become

(8) VU= -A
(+) (-)

(VA+X)A-+A+I(vA-a)-A+X(F+ F)A-x
(+) (-)

+(-r)+(/I- r),
for U= UZ=A+M-*. When we put C= U=AB, it follows

(9) ,B= -B(A)B+BA,+A,B.
We call the one-parameter system of matrices the parallel system in M,

which is a solution of the differential equations VA-dX*=O. This is
dt

analogous to the parallel vector system in an ordinary manifold with a
linear connection. The conditions of integrability of the differential
equations 7A 0 are

(10) 2VcVA=--KA+AK[=0,

1) Contrast the concept of these three categories with that of l + 1, -1 or
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where

(11)
2 x +

are called the curvature matrices, and we have also similar conditions
for VA+/----0. In order that for any matrix A (10) should hold, it
must be K=K-O, which is the case where the manifold is fiat.
We can obtain the following identities for the curvature matrices, which
are analogous to the so-called Bianchi’s identities,

(12) VrK-KrA--O
4. The parameters and the curvature matrices are transformed by

any change of coordinates x in a similar manner to ordinary vectors
and tensors respectively, for example,

(la)

but V7A not to ordinary tensor and
8x 8x" +VA(14) VvA=VV.A .% a, Oa,x

If we intend to define the second covariant derivatives as that they
are transformed in the same manner as the curvature matrices by any
change of x, it is sufficient to introduce the functions having the
property of parameters of an affine connection) and to put

(15) V7A VVA VA.
This connection lies also in the sphere of application of the general
theory. In fact, M may be regarded here as having a matrix A and
a number of matrices VA as its elements.

5. Let A= VAW be the fundamental transformation in M, where
V and W are both matrices and WV-U. We then have the change
of F and F due to this transformation

(16) =VFW-.av W, =VF;W-V OW
8xx 8x

These are the necessary and sufficient conditions for V(VAW)= VVA W,
A being an arbitrary matrix.

6. The parameter matrices F, F may be regarded as both square
matrices and they depend in general on the numbers of rows p and
columns q of the matrix A, to which the eovariant differentiation be

1) Naturally a general linear connection can stand for the affine connection.
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applied, and the order of F is equal to q and that of r to p. For

this reason we may denote them by , respectively, where
p, q--1, 2, i.e. we have an infinitely large number of parameters.
This fact means that the number of dimensions of M may be regarded
as being indeterminate.

7. Now we shall apply the above-mentioned theory to a manifold
with a linear connection rI.. Let A be an ennuple e’ and .=((,)),
F;=0, then the parallel system of matrices are nothing but the system
of geodesically moving ennuples along a curve1) and we have
K,--((RY,.,)). When A is regarded as a linear transformation --Av
in the ordinary vector space, and Q--- --((r,)), then we obtain the
theory of linear transformation groups, which is of course a special case
of Cartan’s theory of transformation groups.) (12) coincide perfectly
with Bianchi’s identities. We can moreover in this case let A/ and
A- correspond to a contra- and covariant tensor A*, A, respectively
then we know that Q, F; proceed to the parameters of connection of
a tensor manifold.

8. We can better generalize our theory by taking M also as a
manifold of matrices. Then the covariant derivatives of a matrix A
form a matrix Ax, whose elements are matrices, and there are two
kinds of the second covariant derivatives. We have many other
interesting facts, but their detailed theory will be left to the next
paper.

1) See on the moving ennu.ples, E. Laura: La teoria delle matrici e il metodo
dell’m edro mobile, Rendiconti d. Seminario Mat. d. R. Univ. di Padova, 1 (1930), 85-109.

2) E. Cartan" La gomtrie des groupes de transformations, Journal de Math.,
sr. 9, 6 (1927), 1-119, etc.


