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Let a system of matrices {U1, U2, U} form an infinitesimal
group of Lie’s continuous group, so that

IVy,

and put

k=l

In the case where the constants of structure c are real, we
consider the space of vectors o(x)=(,o(x,), (z), w(z)), whose
components w(z) are arbitrary analytic functions in z] 2 and real
functions in 2 z 2.

Let G be a set of the fundamental solutions) Y(z) satisfying the
differential equation of matrix

(1) dY(z) U(a,(x)) Y(x,), where w(x)e
dx

then we know2) that G forms a topological group and a set of Y(0, for
a fixed point $, forms Lie’s continuous group generated by { U, U2,

Now, if the fundamental solutions Z(z) and Y(z) corresponding to
U(v(x,)) and U(w(z)) respectively, satisfy the same boundary condition
Z(1)= Y(1)= Y, then we say that Z(z) is contained in the same class
Y= {Y(z)} as Y(). Further, if the vector v(z) of Z(z) is deformable
to the vector ,o(z) of Y(z) in the vector space of the above class
Y={Y()}, then we define that Z(x) is congruent to Y(z), that is,
Z()- Y(z).

If (* be the group deduced by this congruence from G, we have
Theorem.2) * is the universal covering group3) of Lie’s connected

group generated by { U, U2 U}.
Example. In the case where

U=(01 0O) and U.=(O0 ),
the fundamental solution Y(x) of (1) is expressed by

y(x)
o

o e

1) If Y(O)---E, where E denotes the unit matrix, we call Y(x) the fundamental
solution of (1).
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Therefore, we know that the universal covering group of Lie’s con-
tinuous group

x:--x /., (mod. 2),
is given by
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