PAPERS COMMUNICATED

21. On the Multivalency of an Analytic Function.

By Shin-ichi Takahashi.
Mathematical Institute, Osaka Imperial University.
(Comm. by M. Fujiwara, m.I.A., March 12, 1936.)

Recently some sufficient conditions for the multivalency of an analytic function in a simply-connected domain are established. ${ }^{1}$. The object of the present note is to prove two theorems to this effect.

Theorem I. Let $f(z)=z+a_{2} z^{2}+\cdots \cdots$ be analytic and meromorphic for $|z| \leqq \rho(\rho>1)$ and $f(z) \neq 0$ for $z \neq 0(|z| \leqq \rho)$. Then $f(z)$ is at most p-valent in $|z|<1$ if

$$
|f(z)|>\frac{\rho}{1^{/} 1+(\rho-1)^{2(p+1)}} \quad \text { for } \quad|z|=\rho
$$

This theorem has already been proved by Bieberbach for the special case $p=1{ }^{2}$)

Theorem II. Let $f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots \cdots$ be analytic and regular for $|z| \leqq \rho(\rho>1)$. Then $f(z)$ is p-valent in $|z|<1$, if

$$
\left|\frac{f(z)}{z^{p}}\right|<\sqrt{1+\left(1-\frac{1}{\rho}\right)^{2(p+1)}} \quad \text { for } \quad|z|=\rho .
$$

Proof of Theorem I. $\varphi(z)=f^{-1}(z)$ is regular for $0<|z| \leqq \rho$ and has in $z=0$ a simple pole whose residuum is equal to 1 . Therefore we have

$$
\varphi(z)=\frac{1}{z}+\frac{1}{2 \pi i} \int_{|\zeta|-\rho} \frac{\zeta \varphi(\zeta)-1}{\zeta(\zeta-z)} d \zeta, \quad|z|<1 .
$$

Putting

$$
\left[z_{0}, z_{1}, \ldots \ldots, z_{p}, f\right]=\left|\begin{array}{cccccc}
1 & z_{0} & z_{0}^{2} & \ldots \ldots & z_{0}^{p-1} & f\left(z_{0}\right) \\
1 & z_{1} & z_{1}^{2} & \ldots \ldots & z_{1}^{p-1} & f\left(z_{1}\right) \\
\ldots \ldots \ldots \ldots & & & \\
1 & z_{p} & z_{p}^{2} & \ldots \ldots & z_{p}^{p-1} & f\left(z_{p}\right)
\end{array}\right|:\left|\begin{array}{ccccc}
1 & z_{0} & z_{0}^{2} & \ldots \ldots & z_{0}^{p} \\
1 & z_{1} & z_{1}^{2} & \ldots & \ldots \\
\ldots \ldots & z_{1}^{p} \\
1 & z_{p} & z_{p}^{2} & \ldots \ldots & z_{p}^{p}
\end{array}\right|
$$

where $z_{0}, z_{1}, \ldots \ldots, z_{p}$ lie in the unit circle, we get by induction the equality

$$
\left[z_{0}, z_{1}, \ldots \ldots, z_{p}, \varphi\right]=\frac{(-1)^{p}}{z_{0} z_{1} \ldots \ldots z_{p}}+\frac{1}{2 \pi i} \int_{\mid \zeta 1=\rho} \frac{\zeta \varphi(\zeta)-1}{\zeta\left(\zeta-z_{0}\right)\left(\zeta-z_{1}\right) \ldots \ldots\left(\zeta-z_{p}\right)} d \zeta
$$

Thus $\varphi(z)$ and also $f(z)$ are at most p-valent in $|z|<1$, if

$$
\left|\frac{z_{0} z_{1} \ldots \ldots z_{p}}{2 \pi i} \int_{|\zeta|=\rho} \frac{\zeta \varphi(\zeta)-1}{\zeta\left(\zeta-z_{0}\right)\left(\zeta-z_{1}\right) \ldots \ldots\left(\zeta-z_{p}\right)} d \zeta\right|<1
$$

[^0]for all $z_{0}, z_{1}, \ldots \ldots, z_{p}$ lying in the unit circle. Now
\[

$$
\begin{aligned}
& \left|\frac{z_{0} z_{1} \ldots \ldots z_{p}}{2 \pi i} \int_{\mid \zeta 1-\rho} \frac{\zeta \varphi(\zeta)-1}{\zeta\left(\zeta-z_{0}\right)\left(\zeta-z_{1}\right) \ldots \ldots\left(\zeta-z_{p}\right)} d \zeta\right| \\
& \quad \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{|\zeta \varphi(\zeta)-1|}{\left|\zeta-z_{0}\right|\left|\zeta-z_{1}\right| \ldots \ldots \cdot\left|\zeta-z_{p}\right|} d \theta, \quad \zeta=\rho e^{i \theta} \\
& \quad \leqq \frac{1}{2 \pi}\left[\int_{0}^{2 \pi}|\zeta \varphi(\zeta)-1|^{2} d \theta \int_{0}^{2 \pi} \frac{1}{\left|\zeta-z_{0}\right|^{2}\left|\zeta-z_{1}\right|^{2} \ldots \ldots .\left|\zeta-z_{p}\right|^{2}} d \theta\right]^{\frac{1}{2}} \\
& \quad=\frac{1}{2 \pi}\left[\int_{0}^{2 \pi}\left\{|\zeta \varphi(\zeta)|^{2}-1\right\} d \theta \int_{0}^{2 \pi} \frac{1}{\left|\zeta-z_{0}\right|^{2}\left|\zeta-z_{1}\right|^{2} \ldots \ldots .\left|\zeta-z_{p}\right|^{2}} d \theta\right]^{\frac{1}{2}} \\
& \quad \leqq \frac{1}{2 \pi}\left[2 \pi\left(\rho^{2} M^{2}(\rho)-1\right) \frac{2 \pi}{(\rho-1)^{2(p+1)}}\right]^{\frac{1}{2}} \\
& \quad=\left[\left(\rho^{2} M^{2}(\rho)-1\right) \frac{1}{(\rho-1)^{2(p+1)}}\right]^{\frac{1}{2}},
\end{aligned}
$$
\]

where

$$
|\varphi(z)|<M(\rho) \quad \text { for } \quad|z|=\rho .
$$

Thus $f(z)$ is at most p-valent in $|z|<1$, if

$$
M(\rho)<\frac{\sqrt{1+(\rho-1)^{2(p+1)}}}{\rho}
$$

i.e. $\quad|f(z)|>\frac{\rho}{\sqrt{1+(\rho-1)^{2(p+1)}}}$ for $\quad|z|=\rho$,
and Theorem I is proved.
Theorem II can be proved just in the same way as Theorem I. It is sufficient to remark that under the hypothesis of the theorem we have

$$
f(z)=z^{p}+\frac{1}{2 \pi i} \int_{|\zeta|-\rho} \frac{f(\zeta)-\zeta^{p}}{\zeta-z} d \zeta, \quad|z|<1
$$

and therefore

$$
\left[z_{0}, z_{1}, \ldots \ldots, z_{p}, f\right]=1+\frac{1}{2 \pi i} \int_{|\zeta|=\rho} \frac{f(\zeta)-\zeta^{p}}{\left(\zeta-z_{0}\right)\left(\zeta-z_{1}\right) \ldots \ldots\left(\zeta-z_{p}\right)} d \zeta
$$

[^0]: 1) Cf. P. Montel: Sur une formule de Weierstrass, Comptes Rendus, 201 (1935), 322.
 2) Bieberbach: Eine hinreichende Bedingung für schlichte Abbildungen des Einheitskreises, Crelle Journ., 157 (1927), 189.
