PAPERS COMMUNICATED

16. Zur Idealtheorie der einartigen Ringbereiche mit dem Teilerkettensatz.

Von Yasuo AKIZUKI.

Dai San Koto Gakko zu Kyoto.

(Comm. by T. TAKAGI, M.I.A., March 12, 1937.)

Der Zweck dieser Arbeit¹⁾ liegt in der Verallgemeinerung der folgenden beiden fundamentalen Sätze über einartige Ringbereiche mit dem Teilerkettensatz:

- 1. Dann und nur dann sind die zu demselben Primideal \mathfrak{p} gehörige Primärideale sämtlich Potenzen von \mathfrak{p} , wenn kein echtes Zwischenideal zwischen \mathfrak{p} und \mathfrak{p}^2 existiert. (Diesen Satz verdankt man M. Sono.²⁾
- 2. Dann und nur dann sind alle zu p gehörigen Primärideale für jedes p Potenzen von p, wenn der Grundintegritätsbereich in seinem Quotientenkörper ganz-abgeschlossen ist. (Dieser Satz stammt von E. Noether.³⁾)

Es sei \Re ein einartiger Ringbereich mit dem Teilerkettensatz, $\Re_{\mathfrak{p}}$ sein Quotientenring nach einem Primideal \mathfrak{p} . Bekanntlich kann man die bei der Komposition der $\Re_{\mathfrak{p}}$ -Ideale gewonnenen Ergebnisse sofort auf die zu \mathfrak{p} gehörigen \Re -Primärideale übertragen. Daher legt man vorerst den Primärring (mit oder ohne Nullteiler) mit dem Teilerkettensatz zugrunde. In einem solchen Bereich ist der Rang $\chi(\mathfrak{a})^4$ vom Restklassenmodul $\mathfrak{a}/\mathfrak{a}\mathfrak{p}$ über $K \simeq \Re/\mathfrak{p}$ gleich der Anzahl der notwendigen Basiselemente vom Ideal $\mathfrak{a}.^5$ Somit ist die Bedingung, dass keine Zwischenideale zwischen \mathfrak{p} und \mathfrak{p}^2 liegen, äquivalent mit der Bedingung, dass $\chi(\mathfrak{p})=1$ ist. Man ersetzt also die Sonosche Bedingung durch die Bedingung

I. Es sei für eine vorgegebene natürliche Zahl n $\chi(\mathfrak{p}^n) = n$.

Im allgemeinen gilt folgendes für den Primärring mit dem Teilerkettensatz:

Satz 1. Es sei $\chi(\mathfrak{p}^l) \leq l$, und der Restklassenkörper \Re/\mathfrak{p} besitze mindestens $\chi(\mathfrak{p}^l)$ Elemente. Dann gilt die Gleichung $\mathfrak{p}^l = (\pi) \mathfrak{p}^{l-1}$, wenn, was für den Integritätsbereich stets der Fall ist, ein Element a mit $a^l \equiv 0 \ (\mathfrak{p}^{l+1})$ in \mathfrak{p} existiert. \mathfrak{p}^l

Satz 2. Es sei $\mathfrak{p}^l = (\pi) \, \mathfrak{p}^{l-1}$ und $\mathfrak{X}(\mathfrak{p}^l) \leq l$. Falls \Re keinen Nullteiler besitzt, ist für jedes $\nu \geq l-1 \, \mathfrak{X}(\mathfrak{p}^{\nu}) = \mathfrak{X}(\mathfrak{p}^l)$.

Aus diesen Sätzen ergibt sich

¹⁾ Diese Arbeit wird ausführlich anderen Ortes publiziert werden.

²⁾ M. Sono, On Congruences, II, III, IV, Mem. Coll. Sci. Kyoto, 2, 3, 3 (1918-1919).

³⁾ E. Noether, Abstrakter Aufbau der Idealtheorie, Math. Ann., 96 (1927).

⁴⁾ $\chi(\alpha)$ ist nichts anders als die sogennante "Hilbertsche Zahl."

⁵⁾ Vgl. W. Gröbner, Über irreduzible Ideale in kommutativen Ringen, Math. Ann., 110 (1934).

⁶⁾ Satz 1 ist nicht immer richtig, wenn \Re/p höchstens $\chi(p^I)-1$ Elemente besitzt. Vgl. ein Beispiel am Schluss dieser Arbeit.

Hauptsatz I. Es sei \Re ein den Teilerkettensatz erfüllender Primärintegritätsbereich mit der Bedingung I. Dann ist $1^{\circ} \mathfrak{p}^n = (\pi) \mathfrak{p}^{n-1}$, 2° für jedes $\nu \geq n-1$ $\chi(\mathfrak{p}^{\nu})=n$ und $\mathfrak{p}^{\nu+1}:\mathfrak{p}=\mathfrak{p}^{\nu}$, 3° für jedes \Re -Ideal
a $\chi(\mathfrak{a}) \leq n$, wenn der Restklassenkörper \Re/\mathfrak{p} mindestens n Elemente besitzt.

Anderseits folgt aus rein kombinatorischer Überlegung, die ein Analogon der von F. S. Macaulay und E. Sperner¹⁾ ist,

Satz 3. Ist $\chi(\mathfrak{p}^l) \leq l$, dann ist stets $\chi(\mathfrak{p}^l) \geq \chi(\mathfrak{p}^{l+1})$.

Dieser Satz ist unabhängig sowohl von der Existenz der Nullteiler als auch von der Anzahl der Elemente des Restklassenkörpers \Re/p .

Weiter kann man halb kombinatorisch und halb bewertungstheoretisch den folgenden Satz beweisen:

Satz 4. Es sei \Re ein Primärring mit dem Teilerkettensatz. Dann ist die zahlentheoretische Funktion $\chi(\alpha)$ über den ganzen \Re -Idealbereich beschränkt.²⁾

Nach den Sätzen 3 und 4 lassen sich die folgenden charakteristischen Zahlen für \Re bestimmen: $M_{\Re} = \max \{\chi(\mathfrak{a})\}$, $n_{\Re} = \lim_{\nu \to \infty} \chi(\mathfrak{p}^{\nu})$ und e_{\Re} ist die Zahl mit $\chi(\mathfrak{p}^{e_{\Re}-1}) \neq n_{\Re}$ und für jedes $\nu \geq e_{\Re}$ $\chi(\mathfrak{p}^{\nu}) = n_{\Re}$.

Dann kann man nach den Sätzen 1 und 2 den folgenden Satz beweisen.

Hauptsatz II. Es sei \Re ein Primärintegritätsbereich mit dem Teilerkettensatz. Dann wird von irgendeinem Wert von ν ab die Funktion $\chi(\mathfrak{p}^{\nu})$ konstant $n_{\mathfrak{R}}$. Falls die Anzahl der Elemente des Restklassenkörpers \Re/\mathfrak{p} nicht kleiner als $n_{\mathfrak{R}}$ ist, ist 1° $\mathfrak{p}^{n_{\mathfrak{R}}}=(\pi)$ $\mathfrak{p}^{n_{\mathfrak{R}}-1}$, 2° für jedes $\nu \geq n_{\mathfrak{R}}$ $\chi(\mathfrak{p}^{\nu})=n_{\mathfrak{R}}$ und 3° für jedes \Re -Ideal \mathfrak{a} $\chi(\mathfrak{a}) \leq n_{\mathfrak{R}}$: Es ist dann $M_{\mathfrak{R}}=n_{\mathfrak{R}}$ $e_{\mathfrak{R}} \leq n_{\mathfrak{R}}-1$.

Man kann die obigen Sätze im Kleinen leicht auf die Sätze im Grossen übertragen.

Man denkt sich jetzt über die Erweiterung des Grundbereiches \Re zum ganz-abgeschlossenen Bereich \Im in seinen Quotientenkörper. \Im besitzt, wie ich schon gezeigt habe, incht immer eine endliche \Re -Modulbasis, auch wenn \Re die Bedingung I erfüllt. Bei der Verallgemeinerung des Noetherschen Satzes muss man daher weiter die Bedingung hinzufügen:

II. Der Führer $f = \Re : \Re$ ist verschieden vom Nullideal.

Satz 5. Es sei \Re ein den Teilerkettensatz erfüllender Primärintegritätsbereich mit den Bedingungen I und II. Wenn \Re/\Im mindestens n Elemente besitzt und ausserdem vollkommen ist, dann ist die Erweiterung von \Re zu \Im durch die Adjunktion von einem Element θ n^{ten} Grades (bzl. \Re) möglich.⁴⁾

¹⁾ F.S. Macaulay, Some properties of enumeration in theory of modular systems, Proc. London Math. Soc., (2) **26** (1926), und E. Sperner, Über einen kombinatorischen Satz von Macaulay, Abh. Semin. Hamburg. Univ., **7** (1930).

²⁾ Mir scheint, mindestens soweit ich mich erinnern kann, dieser leicht ersichtbare Satz bis heute noch nicht ausdrücklich ausgesprochen worden zu sein.

³⁾ Y. Akizuki, Einige Bemerkungen über primäre Integritätzbereiche, Proc. Phys.-Math. Soc. Jap., III. 17 (1935). In dem dort gegebenen Beispiel ist $\mathfrak{p}^2 = (\pi)\mathfrak{p}$, doch besitzt \mathfrak{D} keine endliche \mathfrak{R} -Modulbasis.

⁴⁾ Dieser Satz ist auch nicht immer richtig, wenn \Re/\mathfrak{p} höchstens n-1 Elemente besitzt, Vgl. ein Beispiel am Schluss dieser Arbeit.

Dieser Satz lässt sich aus Hauptsatz 1 auf dieselbe Weise ableiten, wie Helms¹⁾ seinen Satz bewiesen hat. Bei diesem Satz 5 ist nur der dem Grad von θ bezügliche Teil neu. Satz 5 gilt auch im Grossen:

Es sei \Re ein einartiger Bereich mit dem Teilerkettensatz, und der Führer $\mathfrak{f} \rightleftharpoons (0)$. $n_{\mathfrak{p}_i}$ bezeichne die oben mit n_{\Re} bezeichnete Zahl für den Fall: $\Re = \Re_{\mathfrak{p}_i}$, und es sei $n = \operatorname{Max}(n_{\mathfrak{p}_i})$ über alle \Re -Primideale. Besitzt jedes \Re/\mathfrak{p}_i mindestens $n_{\mathfrak{p}_i}$ Elemente, so lässt sich \Re zu $\mathfrak D$ durch die Adjunktion von einem Element n^{ten} Grades erweitern.

Es sei wieder \Re ein Primärintegritätsbereich mit dem Teilerkettensatz. Vielleicht ist unter der Bedingung I stets $\chi(\alpha) \leq n$ und für jedes $\nu \geq n-1$ $\chi(\mathfrak{p}^{\nu})=n$, auch wenn \Re/\mathfrak{p} höchstens n-1 Elemente besitzt. Es ist mir aber bis jetzt nur gelungen, das folgende zu beweisen: Wenn \Re/\mathfrak{p} gerade n-1 Elemente besitzt, so ist für jedes $\nu \geq n$ $\chi(\mathfrak{p}^{\nu})=n$.

Sind $\chi(\mathfrak{p})$, $\chi(\mathfrak{p}^2) \leq 3$ und $\chi(\mathfrak{p}^3) = 3$, so ist für jedes Ideal a $\chi(\mathfrak{a}) \leq 3$, und für jedes $\nu \geq 2$ $\chi(\mathfrak{p}^{\nu}) = 3$. In solchem Fall ist es von Interesse, dass der Fall, wo die Gleichung $\mathfrak{p}^3 = (\pi) \, \mathfrak{p}^2$ nicht gültig wird, einen sehr speziellen Fall darstellt: Es ist nämlich dann $\mathfrak{p} = (\pi, a)$, und die Erweiterung von \Re zu $\mathfrak D$ ist nur durch die Adjunktion von zwei quadratischen Elementen (keineswegs von einem kubischen Element!) möglich, und der Führer ist dazu \mathfrak{p}^2 ! Also lässt sich solcher Fall keineswegs im kubischen, sondern erst im biquadratischen Zahlkörper reali-

sieren: Es sei $k=R\left(\sqrt{\frac{7+\sqrt{57}}{2}}\right)$, wo R den rationalen Zahlkörper bedeutet. Dort ist $(2)=\mathfrak{L}_1^2\mathfrak{L}_2\mathfrak{L}_3$. Ist ω eine ganze Zahl vierten Grades mit $\omega\equiv 0$ $(\mathfrak{L}_1),\ \equiv 0$ $(\mathfrak{L}_2^2);\ \equiv 0$ $(\mathfrak{L}_2^3),\ \equiv 0$ $(\mathfrak{L}_3^3),\$ so nehme man einen Zahlring $\mathfrak{J}=I(\omega)$, wobei I den rationalen Integritätsbereich bezeichnet. Ist ferner $\mathfrak{p}=(2,\omega)$ \mathfrak{J} , so wird der Quotientenring $\mathfrak{J}_{\mathfrak{p}}$ von \mathfrak{J} nach \mathfrak{p} ein solcher Bereich sein.

¹⁾ A. Helms, Ein Beitrag zur algebraisehen Geometrie, Math. Ann., 111 (1935).

²⁾ Es ist ersichtlich, dass $n_{\mathfrak{p}_i}$ dann und nur dann ≥ 2 ist, wenn $\mathfrak{f}\equiv 0$ (\mathfrak{p}_i) ist.