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26. The Multiplication-Theorems of the Cauchy eries.

By Tosio KITAGAWA.
Mathematical Institute, Osaka Imperial University.

(Comm. by . KAYA, M.LA., March 12, 1938.)

The chief object of this note is to establish the multiplication
theorems of Cauchy series under the conditions which are in some
respects more general than those given in our previous paper. Their
connections with certain aspects of an interpolation will also be in-
dicated in 3.

1. We consider a linear functional l{f()}--]:f()d() associ-

ated to a given function () of bounded variations over a finite inter-
val (0, b). To each function f(z), which is Lebesque-integrable over
(0, b), we shall correspond a sequence of contour-integrals defined by

_1 }
where the integral function G(2):--l{e}.3 We observe

Theorem I. Consider a fiencion f(x) belonging to L(O, b)4) with
p 1. If there is a sequence {S(x; f)} (r=l, 2, 3, ) such that

h, .for y gia fui g() beloi to L(O,b), wlw,ra 111)4-
1] 1, lmv

(3) (f g)--l lj;f(-)g(,)d}
l{eI2e-f()d}l{e;e-’g()d}

d=lim 1- .
1) T. Kitagawa: On the theory of linear translatable functional equation and

Cauchy’s serie Jap. Journ. Math., XIII (1937) pp. 233-332. CL specially Chap. III,
} 12-14. We shall note this paper by [TJ.

2) In this note as well as in IT], a sequence of contours (Tr} (r--l, 2, 3 is
always assumed to be selected such tbt (i) ’r is contained in the domain enclosed by
’r+ and, Cr diverges to the whole plane as r-oo, that is, the distance between the
origin and g’r, which we denote by dr, tends to infinity as r--> oo (ii) there are merely
two points of the intersections of ’r with the imaginary axis of -plane, which we
denote by ipr and --ir respectively. The interval (0, b) is assumed to be closed.

3) In [T] we have considered a (-section of Cauchy series with respect to a linear
translatable operation. The present form can be recognised as a special case of the
former one, as we can consider a linear translatable operation defined by l(f(x+ ))----

Cf. Also J. Delsarte" Les fonctions moyenne-priodiquea" Jourm
0

cL Math. Pures et appliques, neuvime srie, tome quatorzieme (1935).
4) L(0, b) denotes the class of all the functions f(x) which are defined over

(0, b) and If(x)[ are integrable in the sense of Lebesque.
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Proof" By the linearity of the functional 1 and the HSlder’s in-
equality we obtain

This leads us to lira (f, g)=(f, g), which is equivalent to (3). q.e.d.

In the right-hand side of (3) the contour-integral with respect to
each {P can be easily expressed by the formal calculation as the bilinear
form1) of the expansion-coefficients of the Cauchy series of f() and
g(). Further we shall give

Example 1. If all the zero-points of G(D are simple and imagi-
nary, and if, denoting them by {i} (n= 0, +/- 1, +/-2, ), they are
subjected to the condition that there is a constant D with

(4) I-n] D < 1 (n=0, +/-1, 2=2, ),

then the hypothesis to Theorem I holds for any function belonging to
L(0, 2u). To see this, we have only to notice that under the assump-
tion (4) our Cauchy expansion coincides with the non-harmonic Fourier
series) with respect to the function set {e-}) (n=O, +/-1, 2=2, ).

2. Now we turn to the consideration of the functions which are
defined over (-oo, oo) and Lebesque-integrable in any finite interval.
We shall consider a sequence of contour-integrals

e /e f()d}d
for each fixed xo in -oo < xo < . We adopt

Definition 1. A Cauchy series of f(x) which is defined by he
sequence (5) is said to be of Fourier type with respect to the sequence
of the contours ((} (r=l, 2, 3 ), if, for each fixed xo in- <

+b

(6) S(x, xo; f)-1 f(t) sin fl(x-x_t t) dt

.tends uniformly to zero over any interval (xo+, xo+b-e), being
arbitrarily giyen positive number, as r tends to infinity.

1) Cf. IT], Chap. III, 13, Multiplication-theorema
2) See Paley and Wiener: Fourier transforms in the complex domain. Am.

Math. Coll. Publ. XlX, Chap. VII, 29, Theorem XXXVII (p. 100) and 30, (pp. 108-
113). Specially the relation (29.02) is important for the present purpose, when gn(x)
--_ein=. The choice of a sequence of contours (’r) will be indicated in the following
paragraph, Example 2.

3) The proof will be given in the author pap.er" The Parseval theorem of Cauchy
series and the inner products of certain Hilbert spaces. The paper will appear else-
where.
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We sbll prove
Theorem II. Consider a function f() which is L.integrable in

any finite interval. Let it be a solution of the functional equation

(7) Af(x)----I:f(+)d(t)=O (- < < ).

Then for any contour , S(x, xo;f) /s independent of x0; that is,
for each xo in xo S(x, x0; f) S(x, 0; f).

If furthermore the Cauchy series of f(x) is of Fourier type with
respect to certain sequence ((}, then for any given finite interval (a,
fl), we have

(8) limIlf(x)-S,(x, O;f)ld=O,
and consequently the Hypothesis to Theorem I and hence the Conclusion
remain true.

Proof: The first part) of the Theorem was proved in my previous
paper. In virtue of the assumption that the Cauchy series of f(x) is
of the Fourier type, it is evident that, for any given x0 and any given
small positive number , we have

,9) lim),.If+Jx’-S"(x’ Xo;f)]’d--O.

Now let (a, ) be an arbitrarily given finite interval. By a suitable
choice of the sequence {x)} (i=1, 2, N), we may cover the
interval (a, fl) by the sequence of the intervals {(x)+, x)+b-)}
(i= 1, 2, N). In view of the relation S(x, X(o); f) =S(x, 0; f),
we observe

(10)
a
If(x)- S..(x, O; f)I"dx N If(:)- S.,.(x, O; f)!vdx

i-I

In combination of (9) and (10), we reach (8). q.e.d.
Ezml #. By the theorem of N. Levinson) on the non-harmonic

Fourier series, it is readily seen that, if, in the hypothesis to Example
2, the condition (4) is replaced by: I;t-l--<__ D < (p-1)/9.p,) for all, then the Cuchy seres of functions wldch axe L4ntegrable in any
finite interval are of the Fourier type in our terminology, when the

1) Cf. IT], Chap. II, 6, Theorem VI, I and its proof.
2) By the covering theorem of Heine-Borel. The same method is also used in

the proof of Theorem VI, II in [T].
3) Ar. Lev/nson: On Non-Harmonic Fourier Series, Anm Math. 37 (1936)pp.

917-936. Cf. specially Theorem I in p. 920.
4) In this condition we.can prove that our Cauchy expansion is a non-harmonic

Fourier serie The proof will be given in a paper cited on the footenote (3) in p. 97.
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sequence of contours {(g} is assumed to be so chosen that each
contains all the first 2rq-1 zero-points, i.e., {} (k=0, 5:1,
+/-2r) in its interior, the others remaining in the exterior of

Ezamp[e 3. In the terminology of our previous paper IT], we
may enunciate the following: if there is a sequence of contours
(=1, 2, 3, ) such that, for any given 8>0, {P{P(,-8) and
further that with respect to this sequence and each , G()=(P-O
(0; i, b-), then the Cauchy series of functions which are Lebesgue-
integrable in any finite interval are of the Fourier type with respect
to this sequence of the contours

3. We shall finish this note with a remark to the connections
with the multiplication-theorem of Cauchy series and the interpolation-
theory. The cardinal series and its connection with certain aspects of
the theory of Fourier series and integrals were thoroughly investigated
by several authors of the Edinburgh school. The cardinal series con-
cerns itself with the interpolation at all integers where the values of
function to be interpolated are assigned. From the general standpoint
of the interpolation theory it may be desirable to generalise their in-
genious method to a more general interpolation at the irregularly dis-
tributed points, where, in general, not only the values of a function,
but also the values of their derivatives up to certain respective orders
are assigned to be interpolated. For this purpose we wish to com-
mounicate the following theorem.

Assumpt{o I. An integral function C(z) is definied by

{I e-’,()d}(11) C(z)=l
o

1) This reads: {Tr) is associated to the inte,val (,--). As we have defined
in [T], Chapter I, { 3, Definition III, this means that {r} satisfies the following two
conditions:

Condition 10. The distances dr between the contour r and the origin tends to
infinity as - o.

Condition 2. As tends to infinity we have

f le-]ld]=O(1); ]e,]]d 1=o(1).

where ’(r+) resp. -) denote the parts of r located in the positive resp. the negative
half-planes of -plane.

Since we have already assumed Condition 1 Condition 2 is essentiaL
2) This reads: G(D is O-associated to {r} with the inde 0 in the interval

(8, b -8). The meaning is as follows- G(a) has no zero-points on any contour of the
sequence (this has been already implicitly assummed) and further

<..+/-) G--G- Ida l=O(1) (as r-* oo)

uniformly concerning q in d <= q <= b-8.
3) Incidently we have the opportunity to remark-that in the hypothesis to

Theorem XII. I in IT] p. 286 we must add the condition that f(x) is a solution of the
function equation Af(x)=0 in--oo << oo. The employment of the Fejr-sum of
Cauchy series and Condition 3* are then avoidable. Thus Theorem XII. I w//l be-
come to possess no ezistence-valus, and it should be replac by the present Theorem II.
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where Z is the linear functional discussed in 1-2 and (()is a certain
function belonging to Lq(O, 2) with q > 1.

Assumption II. For a certain given a, the linear unctional [ is
defined by

(12) Z {f(e)}=Z {eS()} I: eS()d(e),
and there is a sequence of contours {(Y} (r 1, 2, ) such that, for
each fixed z in the finite complex z-plane, the Cauchy series of e (as
functions of 0 with respect to the linear functional 1, which we denote

aby {S( e)} (r=l, 2, ), possesses the property

(13) lim: ]e-S(t; e) ]d O,

with p subjected to the condition lip+l/q= 1.
Theorem III. Under the Assumptions I-II, we have, for each

$ed z,

(14) C(z) lim G(z+a) . C(2) d2.
2i G(+)(z-)

Proof: This can be proved quite similarly as in Theorem I, in
view of the facts that the generating function of is G( /a) and that

(15)

G(z+a) e*d2
2/ Y G(+.) (z-)

In case when the Assumption Ii is valid not only for a certain
single value of a but also each value belonging to certain range in the
complex plane by respective suitable choice of the sequence of contours,
the relation1) may be recognised as the consistency property of the
series of the right-hand side of (15). The consistency of the cardinal
series follows from the facts that in this case G(it)=sintn) and con-
sequently that the associated Cauchy series, which coincides particulary

1) Their results and related literatures are gathered together in the treatise of
J.M. Whittaker: Interpolatory Function Theory. Cambridge Tracts, 33 (1935).

2) The cardinal series can be considered as a special case of the series (15) by the
following conventions; we define -- [$=-].

($)= [- < < ].- E$--=].

And we consider functions defined on the imaginary axis- the linear functional is
defined by

Z{f(i)} ’f(i$)dq,($)-- (f(ir)-f(-i)}/2i,
J--

the generating function is l${e}--sin
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with the ordinary Fourier series, satisfies the Assumption II for any
finite complex number a.D

The author wish to remark that the problem that, given a sequence
of complex numbers {a.} (= 1, 2, 3, b= 1, 2, m), where
each m is the order of multiplicy of each as zero-point of G(t),
what condition will imply that there is a function (/) belonging to
L(0, b) such that

a. =le_c()d(16) lim ,
/Jo /

oto with the t o , M, Wldt1kt) o the oII seri.

1) In his treatise lo cit, (p. 71) J.M. Whittaker said "The cardinal series is
particularly favoured because the integral function H(Z) (G() in our notation) as-
sociated with it happens to be sin Z (sin in our notation)." And he emphasised
these pecurialities in two points- the first is the orthogonality, i.e.

sin nt sin mt dr=8,
o

and the ond is the addition theorerm But so far as Theorem III concerns, it is to
be noted that the saymptotic behaviour of G() plays the most important rble, as may
be seen from the Assumptions I-II.

2) The multiplicity of (] is the positive integer mn such that

G(’)(,J=O (s=0, 1, 2, m-l)
G<)()e 0.

3) J.M. Whittaker" loc. cit, pp. 67-71. Cf. also his original paper- The
"Fourier" theory of the cardinal function. Proc. Edinburgh Math. Soc. 1 (1929), 169-
176. Our Theorem III concerns itself more intimately with the results of W.L. Ferrar.
Cf. Fer.rar: Proc. Royal Soc. Edinburgh. 45 (1925); 44} (1925); 47 (1927


