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An Abstract Treatment of the Individual
Ergodic Theorem.
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Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, i.I.A., July 12, 1940.)

1. Introduction. The analytical interests concerning the ergodic
theorems may be observed from two viewpoints. Firstly, the ergodic
theorems give us means for determining the fixed points und linear
operations. Secondly, they concern with the deduction of the stronger
convergences of linear operations from the weaker ones. Some enten-
sive literatures on the mean ergodic theorem are more or less guided
by these viewpoints. Concerning the individual ergodic theorem, how-
ever, we have only small number of literatures. The dominated ergodic
theorem-due to N. Wiener and M. Fukamiya,) and the writer’s exten-
sions) of Birkhoff-Khintchine’s ergodic theorem both constitute ex-
amples on the individual ergodic theorem. The purpose of the present
note is to extend the idea developed in [I]. The continuity theorems
(theorem 1 and its corollary) have interests of their own. Theorem 2
is an abstract form of the individual ergodic theorem. We may deduce
from this the individual ergodic theorem for m-parameter abelian group
of equi-measure transformations, and more generally that for general
semi-group of linear operations (theorem 3). The results in [I] in a
somewhat extended form are also deducible from theorem 3.

2. A continuity theorem and an abstract form of the individual
ergodic theorem. Under abstract (S) space (A-S) we mean a-linear
space of type-F, which satisfies the following axioms (we donote by
x, y, the elements of (A- S), by x IIs, y IIs, their quasi-norms
and by a real scalar)"

(1) a semi-order relation x> y is defined in (A-S), relative to
which (A-S) is a linear lattice, viz."

(1-1) corresponding to any two elements x, y there exist the least
upper bound sup (x, y) and the greatest lower bound inf (x, y),

(1-2) translations x--x/y and homothetic expansions x--x with
:> 0 preserve the semi-ordering,

(1-3) sup (x, y) and inf (, y) are both continuous in x and y in the
topology defined by the norm

(2) any sequence (x,} bounded from above (below) admits of the
least upper bound sup x. (the greatest lower bound inf

(3) if we write Lim x. x, in case Lim x. inf sup x=Lim x.
sup inf x, then Lim x,=x implies limllx,-xlls=O.

(4) x y -x implies x IIs y IIs.
1) N. Wiener"

46 (1939), 150-153.
2) K. Yosida"

Duke Math. J., 5 (1939), 1-18. M. Fukamiya- T6hoku Math. J.,
Cf. also K. Yosida and S. Kakutani- Proc. 15 (1939), 165-168.
Jap. J. of Math., 15 (1940), 31-36, to be cited as [I] below.
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Let (S) be the class of real-valued measurable functions x(t) on
finite or infinite interval (a,b), which are finite almost everywhere.

By the quasi-norm x l[s= I x(t) dt and the semi-order relation
l/l(t)l l+t

z _>_ y (z(t) _>_ y(t) almost everywhere), (S) constitutes a concrete ex-

ample of the space (A-S).D In this case, Lim z=z means lim z(t)=

z(t) almost everywhere. In the sequel, we will write zl for sup (z, 0)-
inf (, 0).

After these preliminaries we may prove
Theorem 1.2 Let (F) be a space of type-F by the quasi-norm x liE,

and consider a sequence {T} Of linear continuous operations on (F)
to (A-S). Putting c---T. for any e (F), we assume tlt the set
(F)’ of points x e (F) for which Lirax exist constitutes a set of second

category in (F). Then Lira x, and Lira x exist for all z e(F) and

the operation T, T.x=, 5=Lim x,-Limx is a continuous operation

on (F) to (A-S).
Proof. Put x=sup x I, x’ = sup x for any x e (F)’, and con-

sider the operations V,.x=x;, V.x=x’ on (F)’ to (A-S). Each V. is

continuous and limllV.x-V.xlls=O. Hence, from limll. .V.x s
1 V-:II (k=l, 2, ...)and lim 1- s -k- V-z =0, we obtain the inclusion

s

(F)’3q, G, G= E sup -V.x <e for any e:>0. G is a
k-1 (F) S

closed set of (F) by the continuity of V. Since (F)’ is of second
category in the complete metric space (F), there must exist a G
which contains a sphere of (F). Thus we have a point x0e(F)and

a constant > 0 such that sup - g. x _<_ e for -x0 liE=< & Hence,

1from IV,-(x-x0)l_<_lV-l+lV-ol and V,,. =-,V,,.x, we see

that lim V,.xlls=O uniformly in n. V.x is thus defined for all x e (F)
Ix IF->0

and is continuous at -0 with V-0- 0. Thus, by T- 2V- and

I1T.- T.ylI T-(-)II, T is defined and continuous at every
(F). Q.E.D.
Corollary. The set (F)" of points x e (F). for which Lim x, exists

either coincides with the whole (F) or it constitutes a set of first cate-
gory in (F).

Proof. Let (F)" be of second category in (F), then T.z is con-

1) In truth, (S) is a semi-ordered ring. The concrete representation of semi-
ordered ring as subring of (S) will be published elsewhere. It is to be noted that the
metrical completeness of (A-S) is not necessary in the present note.

2) This is an extension of Banach-Saks’ theorem as formulated by S. Mazur and
W. Orlicz: Stud. Math., 4 (1933), 152-157.
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tinuous on (F) to (A- S). Thus (F)"=E(T.z= 0) is a closed set of

(F). That (F)" is a linear subspace of (F)is evident. A closed linear
subspace which is of second category in a space of type-F must coin-
cide with the whole space. Q.E.D.

Theorem . Let the above (F) be a linear subspace of (A-S)
such that lim x- IIF= 0 implies lira --x IIs O, and let {T} be a

sequence of linear continuous operations on (F) to (F). Assume, as
above, that Lira e.ists as point e (A-S)for those x e (F) which con-

stitutes a set of second category in (F). If, for a point y e (F), there
corresponds e(F), such that limlly-llr=O, T.= (n=l, 2, ...),

Lira (T.y- TT,.y)=O (m= 1, 2, ...), then we must have Lira y=.
Proof. Put y + (y-), then 0 T.y T. (y-) by T-

(n= 1, 2, ...). We have, by theorem 1 and lim (y-)-(y-y=)lie O,

T(y-)=0 from T- (y-y=) 0 (m= 1, 2, ...). However we have
T’(y-ym)=Lim T(y-T.y)-Lim T(y- T.y)=0 from the assump-

tion. Thus IAmy=z exists, ancr"by (3) lim]ly-zlls=O, which proves

z. Hence we have Lim y.-.
3. The individual ergodic theorem for general semi-groups. Let

p 1, then the class of real-valued measurable functions z(t) on (a, b)

with _l-:]z(t)Idt < + o constitutes a Banach space (L) by the norm

Let G be a semi-group (multiplicative system)of linear continuous
operations ) on (L) to (L) with uniformly bounded norms,

(5) II)IIC for all )eG.

Following L. Alaoglu and Garrett Birkhoff,D we will call G "ergodic"
when it possesses a sequence of measures so(V) satisfying i) o(G)=l
for all n, and ii) given ) in G and > 0, N exists so large that
nN implies i(V))-(V)I+](T)V)-(V)]<. We as-

that for any z e (L) the integral T,.x=[ (Tg).:c)d, exists insume
JG

S. Bochner’s or G. Birkhoff’s sense (n=l, 2, ...). We call the point
ye(L) "strongly ergodic" if we have

(6) lim[y,.,(t)-y,(t)l=O almost everywhere for re=l, 2, ...,

where y, T, -y, y,., T,T,. y.
Then we have the
Theorem 3. We assume tha

(7) lim z,(t) oo almos everywhere for those : which constitutes

a set of second category in (Lv).

1) L. Alaoglu and Garrett Birkhoff- Ann. of Math., 41 (1940), 293-309.
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Let a strongly ergodic point y e(L) satisfy the condition.

(8) (y.} contains a subsequence weakly convergent to a point e (LV).D

Then lira y(t)=(t) almost everywhere, lira Y-I1=0 and )=

for edl /x) e G.
Proof.. From (5) we have Tll < C (n=l, 2, ...). Hence, by (8)

and the ergodicity of G, we see2 that lim lly-l{=0 and T().=
for all )eG. Hence, by (6), (7)and theorem 2, we obtain the
theorem. Q.E.D.

4. Application of theorem 3. Let ) be defined by equi-measure
transformation /)." x()= T(g).x, x()(t)=x(P(g).t) for x e (L), and let
G {)} be an m-parameter abelian group of such ). Then each T
satisfies (5) with C= 1 as linear operation on (L1) and on (L2). By putting
(V} the proportion of the cube 0 =< =< n, 0 =</t2 < n, ..., 0 < =< n,
to its portion occupied by V, we see that G is ergodic. We have, more-
over, (7) for p= 1 and for p=2, by the dominated ergodic theorem of
N. Wiener.s That (6) is satisfied for all y e (L) may be proved in the
following manner. For any y e(L) and k we have

clll y (n= 1, 2,...), by the definition of v(V). Hence, if we put

E(, n, k)=E(I y,(t)-y(t) > ), we have mes (E(,n,k)) 2 2
proving (6) by , 1_-<: oo. Since (L) is locally weakly compact, we

have (8) for any y e (L). Thus, by theorem 3, lira y(t) exists almost

everywhere for all y e (L). Since (L) is strongly dense in (L) by the
norm of (L), we have also the existence almost everywhere of lira y(t)

for all y e (L1), by theorem 1.
Thus we have proved N. Wiener’s n-parameter individual ergodic

theorem.
Next let G be the semi-group generated by the iterations {T} of

a linear operation T on (L) to (L), and put T=1, T (n=l,

2, ...). Then, as above, we may prove by theorem 1 and 3 the follow-
ing individual ergodic theorem Since, their proofs are similar as those
in [I], we omit them. However, it is to be noted that the results are
somewhat more general than in [I], for we here deal with (L) on
finite or infinite interval (a, b).

1) If p > 1, (8) is superflous, since (L) with p > 1 is locally weakly compact.
2) L. Alaoglu and G. Birkhoff: loc. cit. It is to be noted that we may obtain

the same result by the arguments employed, in the proof of the mean ergodic theorem
of F. Riesz, S. Kakutani and the present author.

3) N. Wiener: loc. cir. Though we here are concerned with (L)on finite or
infinite interval (a, b), we may obtain (7) by Wiener’s argument.

4) This device I owe to M. Fukamiy.
5) N. Wiener: loc. cir. Wiener’s proof applies to (L) on finite interval (a, b)

only; the mean ergodic theorem for (L) on infinite interval does not in generaI hold
good. Our proof, however, applies to (L) on finite as well as on infinite interval
(a, b).
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Theorem $. Let T be a linear continuous operation (L1) to (L1)
and put x()- T.x for any x e (51). We assume that

( 9 ) T a constant C (n 1, 2,...),

(10) lira lx(=)(t) almost everywhere for those which

constitute a set of second category in (L1).

If for an element y e (L1)

lira y()(t)-0 almost everywhere,

the sequence 1__ ,y() contains a subsequence weakly con-

vergent to an element (L),
then we have

(11) //m --1 y()_ 0, lira _1 y()(t) =(t) almgst every-
n->oo T m-1 n->oo T m-1

where.

Theorem 5. Let p 1, and let T be a linear continuous opera-
tion on (L) to (L) satisfying (9) and (10) in (L). Then we have
(11) for all y e (L).

Theorem 6. Let T be a linear operation on (L) to (L), p 1.
We assume that

for any x e (L) there corresponds a Xe (L) such that
x(’)(t) X(t) almost everywhere (n= 1, 2, ...).

Then (11) hold good for any y e (L).)
Remark. The application of theorem 1, 2 and 3 is not exhausted

by the above theorems. We may obtain, the individual ergodic theorem
in the space of abstractly-valued functions. We may also prove and
extend B. Jessen’s theorem of approximation of Lebesgue integral by
Riemann sums.’.) We will here not enter into the details.

1) This is more precise than the r.lts of Garrett Birkhoff" Proc. Nat. Acad.
So., Z4 (1938), 15d-159, F. Riesz- Proc. London Math. Soc., 13 (1938), 274-278 and
S. Kakutani" Proc. 15 (1939), 121-123.

2) B. Jessen" Ann. of Math., 35 (1934), 248-251.


