PAPERS COMMUNICATED

58. On the Division of a Probability Law.

By Tatsuo Kawata.
Sendai Technical High School.
(Comm. by M. Fujiwara, m.I.A., July 12, 1940.)

1. If a random variable X is represented as a sum $X_{1}+X_{2}$ of independent variables X_{1} and X_{2}, in other words, if the characteristic function of X

$$
f(t)=\int_{-\infty}^{\infty} e^{i t x} d \sigma(x)
$$

$\sigma(x)$ being the distribution function of X, is represented as a product $f_{1}(t) f_{2}(t)$ of characteristic functions $f_{1}(t)$ and $f_{2}(t)$ of X_{1} and X_{2} respectively, X is said to be divisible by X_{1} or X_{2}. The division of X by some random variable is not necessarily determined uniquely what was proved by Gnedenko and Khintchine. ${ }^{1)}$ That is, there exist characteristic functions $f(t), f_{1}(t), f_{2}(t)$ and $f_{3}(t)$ such that

$$
\begin{equation*}
f(t)=f_{1}(t) f_{2}(t)=f_{1}(t) f_{3}(t), \tag{1}
\end{equation*}
$$

where $f_{2}(t)$ is not identically equal to $f_{3}(t)$. But it was shown by P . Lévy that if X is indefinitely divisible, then the division is uniquely determined. The purpose of this paper is to discuss the unicity of divisibility in terms of a distribution function of X.
2. If there exists a t_{0} such that $f_{2}\left(t_{0}\right) \neq f_{3}\left(t_{0}\right)$, then since a characteristic function is continuous there exists an interval $a<t<b$ in which $f_{2}(t) \neq f_{3}(t)$. Since if (1) holds then $f_{1}(t)\left\{f_{2}(t)-f_{3}(t)\right\}=0$, in this case $f_{1}(t)$ or $f(t)$ vanishes in $a<t<b$. Thus the sufficient conditions for the non-vanishing of $f(t)$ in any interval is also the sufficient conditions for the unique determination of division of X. Hence known results ${ }^{2)}$ on non-vanishing of function yield the following theorems.

Theorem 1. Let $\sigma(x)$ be the distribution function of a random variable X and let $\theta(u)$ be a positive, non-decreasing function defined in $(0, \infty)$ such that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\theta(u)}{u^{2}} d u=\infty . \tag{2}
\end{equation*}
$$

If for some constant a (>0)

$$
\begin{equation*}
\sigma(-u+a)-\sigma(-u-a)=O(\exp (-\theta(u)) \tag{3}
\end{equation*}
$$

and X is divisible by some variable, then the quotient is unique.

[^0]Theorem 2. Let $\sigma(x)$ be the distribution function of a random variable X and be a step function in $(-\infty, 0)$ with point spectra a_{n} $(a<0)$ and be unconditioned on the behaviour over $(0, \infty)$. If

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|a_{n}-a_{n+1}\right|=\infty, \tag{4}
\end{equation*}
$$

and X is divisible by some variable, then the quotient is unique.
3. First it will be proved that even when $\sigma(x)$ has only point spectra on $(-\infty, \infty)$, the conclusion of Theorem 2 does not necessarily hold if (4) is not assumed.

Let $f_{1}(t)$ and $f_{2}(t)$ be continuous even periodic functions with period 2π such that

$$
\begin{gathered}
f_{1}(t)=\left\{\begin{array}{cc}
-\frac{2}{\pi} t+1, & 0 \leqq t \leqq \frac{\pi}{2} \\
0, & \frac{\pi}{2} \leqq t \leqq \pi
\end{array}\right. \\
f_{2}(t)=\left\{\begin{array}{cc}
-\frac{2}{\pi} t+1, & 0 \leqq t \leqq \frac{\pi}{2} \\
\frac{2}{\pi} t-1, & \frac{\pi}{2} \leqq t \leqq \pi
\end{array}\right.
\end{gathered}
$$

and let the Fourier coefficients of $f_{1}(t)$ and $f_{2}(t)$ be c_{n} and d_{n} respectively. Then easy calculation shows

$$
\begin{aligned}
& c_{n}=\frac{2}{n^{2} \pi^{2}}\left(1-\cos \frac{n \pi}{2}\right), \\
& d_{n}=\frac{2}{n^{2} \pi^{2}}(1-\cos n \pi) .
\end{aligned}
$$

Thus c_{n} and d_{n} are non-negative and $\sum c_{n}=\sum d_{n}=1$. Hence $f_{i}(t)$ are the characteristic functions of random variables $X_{i}(i=1,2)$ and the spectra of f_{i} are integers. Further by known results, $X_{1}+X_{1}$ also has a distribution having integral point spectra only. From the definitions of f_{1} and f_{2} it is obvious that

$$
f_{1}^{2}=f_{1} . f_{2}
$$

and f_{1} is not identically equal to f_{2}. Thus

$$
X=X_{1}+X_{2}=X_{1}+X_{2}
$$

which proves our assertion.
4. Here we shall prove the condition (2) in Theorem 1 is best possible of its kind.

Theorem 3. Let $\sigma(u)$ be any positive, non-decreasing function defined in $(0, \infty)$ such that

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\theta(u)}{u^{2}} d u<\infty \tag{5}
\end{equation*}
$$

Then for every positive number a, there exists a random variable X such that

$$
X=X_{1}+X_{2}=X_{1}+X_{3},
$$

where X_{1}, X_{2} and X_{3} are certain variables and $X_{2} \neq X_{3}$ and further the distribution $\sigma(x)$ of X satisfies

$$
\begin{equation*}
\sigma(-u+a)-\sigma(-u-a)=O(\exp (-\theta(u))) \text { for } u \rightarrow \infty \tag{6}
\end{equation*}
$$

For proof we require following theorems which will be stated as lemmas.

Lemma 1. Let $\theta(u)$ be the function in Theorem 3 and l be any positive number. Then there exists a non-null function $G(x)$ such that

$$
G(x)=O(\exp (-\theta(|x|))) \text { for } x \rightarrow \pm \infty
$$

and the ordinary Fourier transform of $G(x)$

$$
F(u)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} G(x) e^{-i u x} d x
$$

vanishes for $|u|>l$.
This was obtained by A. Ingham ${ }^{1)}$ and N. Levinson. ${ }^{2)}$
Lemma 2. If $\psi(x) \in L_{2}(-\infty, \infty)$ and be non-null, then

$$
\varphi(t)=\frac{1}{A} \int_{-\infty}^{\infty} \psi(x) \overline{\psi(x+t)} d x, \quad\left(A=\int_{-\infty}^{\infty}|\psi(x)|^{2} d x\right)
$$

is the characteristic function of a random variable.
This is a particular case of a more complete theorem concerning the characterization of the characteristic function of a random variable which is due to A. Khintchine. ${ }^{3)}$

Before we proceed to prove Theorem 3, we shall prove the following theorem using Lemma 1 and 2.

Theorem 4. If $\theta(u)$ is the function in Theorem 3 and l is any positive number, then there exists a distribution $\sigma(u)$ such that it satisfies the condition (6) for every $a(>0)$ and its characteristic function $\Lambda(t)$ vanishes in $|t|>l$.

We consider $\theta(2 u)$ which obviously satisfies the conditions imposed on $\theta(u)$ and we consider $F(u)$ in Lemma 1 replacing l by $l / 2$ and $\theta(u)$ by $\theta(2 u) . \quad F(u)$ vanishes for $|u|>l / 2$. Put

$$
\Lambda(t)=\frac{1}{A} \int_{-\infty}^{\infty} F(x) \overline{F(x+t)} d x, \quad A=\int_{-\infty}^{\infty}|F(x)|^{2} d x
$$

Then $\Lambda(t)$ is a characteristic function of a random variable by Lemma 2 and as easily verified, $\Lambda(t)=0$ for $|t|>l$.

Now direct computation shows

[^1]\[

$$
\begin{aligned}
\sigma(-u+a) & -\sigma(-u-a)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Lambda(x) \frac{\sin a x}{a x} e^{i u x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-l}^{l} \frac{\sin a x}{a x} e^{i u x} d x \int_{-l / 2}^{l / 2} \overline{F(x+t)} F(t) d t \\
& =\int_{-l / 2}^{l / 2} F(t) d t \int_{-l}^{l} \overline{F(x+t)} \frac{1}{\sqrt{2 \pi}} \frac{\sin a x}{a x} e^{i u x} d x,
\end{aligned}
$$
\]

which becomes by Parseval theorem in the theory of Fourier transform

$$
\frac{1}{2 a} \int_{-l / 2}^{l / 2} F(t) d t \int_{-a}^{a} G(u-y) e^{i(u-y) t} d y
$$

$G(t)$ being the one in Lemma 1,

$$
\begin{aligned}
& =O\left(\int_{-l / 2}^{l / 2}|F(t)| d t \int_{-a}^{a}|G(u-y)| d y\right) \\
& =O\left(\int_{-a}^{a} \exp (-\theta(2 u-2 y)) d y\right)=O(\exp (-\theta(2 u-2 a))) \\
& =O(\exp (-\theta(u))), \text { for } u>2 a
\end{aligned}
$$

Thus the theorem is proved.
5. We now proceed to prove Theorem 3. We consider $\theta(2 u)$ instead of $\theta(u)$. By Theorem 4, taking $l=\pi / 2$, we can find a function $\boldsymbol{F}(x)$ such that

$$
\begin{equation*}
F(u)=0 \text { for }|u|>\pi / 2 \tag{6}
\end{equation*}
$$

and

$$
\Lambda(t)=\frac{1}{A} \int_{-\infty}^{\infty} F(x) \overline{F(x+t)} d x, \quad A=\int_{-\infty}^{\infty}|\boldsymbol{F}(x)|^{2} d x
$$

satisfies

$$
\begin{equation*}
\Lambda(t)=0 \text { for }|t|>\pi, \tag{7}
\end{equation*}
$$

and is a characteristic function of a distribution $\sigma(x)$ which satisfies that for every $a>0$

$$
\begin{equation*}
\sigma(-u+a)-\sigma(-u-a)=O(\exp ((-\theta(2 u))) \tag{8}
\end{equation*}
$$

where $\theta(u)$ is the one in Theorem 3.
Now by (6) we can write

$$
\begin{equation*}
\Lambda(t)=\frac{1}{A} \int_{-\pi / 2}^{\pi / 2}{ }^{\pi}(x) \overline{F(x+t)} d x \tag{9}
\end{equation*}
$$

Let $M(t)$ be a periodic function with period 2π which coincides with $\Lambda(t)$ in $|t| \leqq \pi$. Since $\Lambda(\pi)=\Lambda(-\pi)=0, M(t)$ is continuous. If c_{n} denotes the Fourier coefficient of $M(t)$, then

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} M(t) e^{-i n t} d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-i n t} d t \int_{-\pi / 2}^{\pi / 2} \underset{F}{ }(x) \overline{F(x+t)} d x \\
& =\frac{1}{2 \pi} \int_{-\pi / 2}^{\pi / 2} F(x) e^{i n x} d x \int_{-\pi+x}^{\pi+x} \overline{F(t)} e^{-i n t} d t
\end{aligned}
$$

Now since $\pi+x \geqq \frac{\pi}{2},-\pi+x \leqq \frac{\pi}{2}$ and $F(t)=0$ for $|t|>\pi / 2$, we have

$$
\begin{aligned}
c_{n} & =\int_{-\pi / 2}^{\pi / 2} \underset{F}{ }(x) e^{i n x} d x \int_{-\pi / 2}^{\pi / 2} \overline{F(t)} e^{-i n t} d t \\
& =\frac{1}{2 \pi}\left|\int_{-\pi / 2}^{\pi / 2} F(x) e^{i n x} d x\right|^{2} \geqq 0
\end{aligned}
$$

Thus $c_{n} \geqq 0$ and $\sum_{n=-\infty}^{\infty} c_{n}=M(0)=1$. Hence

$$
M(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{-i n t}
$$

is the characteristic function of a distribution such that it has only point spectra contained in the sequence of all integers and the jump at a spectrum n is c_{n}. Obviously $M(t)$ is not identically equal to $\Lambda(t)$ and

$$
\begin{equation*}
\Lambda^{2}(t)=M(t) \Lambda(t) \tag{10}
\end{equation*}
$$

Hence if X_{1} and X_{2} are independent random variables whose distributions are $\Lambda(t)$ and $M(t)$ respectively, then manifestly we have

$$
\begin{equation*}
X=X_{1}+X_{1}=X_{1}+X_{2}, \tag{11}
\end{equation*}
$$

where X_{1} and X_{2} are not identically equal. Let the distribution of X be $\tau(u)$. We have

$$
\tau(u)=\int_{-\infty}^{\infty} \sigma(u-t) d \sigma_{2}(t),
$$

where $\sigma_{2}(t)$ is the distribution function of X_{2}.
We have then

$$
\begin{aligned}
\tau(-u+a)-\tau(-u-a) & =\sum_{n=-\infty}^{\infty} c_{n}(\sigma(-u-n+a)-\sigma(-u-n-a)) \\
& =\sum_{n=-\infty}^{-[u / 2+1]}+\sum_{n=-[u / 2+1]+1}^{\infty} \\
& =S_{1}+S_{2}
\end{aligned}
$$

say. Since

$$
\sum_{-\infty}^{\infty}(\sigma(-u-n+a)-\sigma(-u-n-a)) \leqq[a]+1
$$

and

$$
c_{-n}=O(\exp (-2 \theta(2|n|)))
$$

which is easily seen from the construction of $F(x)$ in Lemma 1 (noticing that we are considering $\theta(2 u)$ instead of $\theta(u)$), we get

$$
\begin{aligned}
\left|S_{1}\right| & =\left|\sum_{n=-\infty}^{-[u / 2+1]}\right| \leqq O(\exp (-2 \theta(2[u / 2+1]))) \\
& \sum_{n=-\infty}^{\infty}(\sigma(-u-n+a)-\sigma(-u-n-a)) \\
& =O(\exp (-2 \theta(u)))=O(\exp (-\theta(u)))
\end{aligned}
$$

$$
\begin{aligned}
\left|S_{2}\right| & \leqq \sum_{-[u / 2+1]+1}^{\infty} c_{n}(\sigma(-u-n+a)-\sigma(-u-n-a)) \\
& \leqq \sum_{-[u / 2+1]+1}^{\infty} c_{n} O(\exp (-\theta(u)))=O(\exp (-\theta(u)))_{n} \sum_{-\infty}^{\infty} c_{n} \\
& =O(\exp (-\theta(u)))
\end{aligned}
$$

Hence we finally get

$$
\tau(-u+a)-\tau(-u-a)=O(\exp (-\theta(u)))
$$

Thus the theorem is completely proved.

[^0]: 1) B. Gnedenko, Sur les fonctions caractéristiques, Bull. l'Univ. Moscou, 1 (1937), P. Lévy, Théorie de l'addition des variables aléatoires, (1937), pp. 189-190.
 2) T. Kawata, Non-vanishing of functions and related problems. Tohoku Math. Journ., 46 (1940), Theorems 4 and 11.
[^1]: 1) A. E. Ingham, A note on Fourier transform, Journ. London Math. Soc., 9 (1936).
 2) N. Levinson, On a class of non-vanishing functions, Proc. London Math. Soc., 41 (1936).
 N. Levinson, A theorem relating non-vanishing and analytic functions, Journal of Math. and Physics 16 (1938).
 3) A. Khintchine, Zur Kennzeichnung der charakteristischen Funktionen, Bull. l'Univ. Moscou, 1 (1937).
