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79. Concircular Geometry Il. Integrability
Conditions of p,,=¢9,,.

By Kentaro YANO.
Mathematical Institute, Tokyo Imperial University.
(Comm. by S. KAKEYA, M.LA., Oct. 12, 1940.)

In a previous paper entitled Concircular geometry I,” we have con-
sidered, in a Riemannian space, curves defined by
ol + ou? g ur SPu _
o  os o2 os

(0.1) 0, (Ay #, Y, "‘=1, 2: 3’ ccy n))

which may be regarded as a generalization of circles in ordinary eucli-
dean space, and we have called them geodesic circles. If a conformal
transformation

(0-2) Ow= P2 G

of the fundamental metric tensor g, transforms any geodesic circle
into a geodesic circle, then the functiou p must satisfy the following
partial differential equations

2 log p

(0.3) p,wEPM—pa{u‘y}—Pﬂm+%g“"papagm=¢yw, (pp= "

We have called such a conformal transformation a concircular trans-
formation.

In the present Note, we shall consider the integrability conditions®
of the partial differential equations (0.3).

§1. The function p satisfying the equations

(1.1) Pu:v—PuPrt —;—gaBPaPﬁgyv =0Guw »
where the semi-colon denotes the covariant derivative, we have
(1-2) Pu; v_p#py=¢g/w ’
where
(1.3) ¢=¢——;—g“‘*papa .
Consequently, putting
(1.4) pi=g"p,,
we obtain, from (1.2),
(1.5) PP =P+ pap®) .

1) K. Yano, Concircular geometry I. Concircular transformations. Proc. 16
(1940), 195-200.

2) This problem was also studied by A. Fialkow, Conformal geodesics, Trans.
Amer. Math. Soc. 45 (1939), 443-473.
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The equations (1.5) show that a curve u*(t) whose tangential direc-
tion coincides with that of the vector A% is a geodesic. We shall call
such a curve p-curve.

Thus we have the

Theorem I. If the conformal transformation (0.2) is a concircular
one, the p-curves are geodesics.

Let us now consider a hypersurface defined by

(1.6) p(u*) =const.
This hypersurface is also represented by the equations of the forme
.7 w=vlw)  (G,4,k =12, .., 2—1)

the u”s being parameters on the hypersurface. If we substitute the
u¥s given by (1.7) into (1.6), (1.6) must be reduced to an identity.

Consequently, differentiating (1.6) logarithmically with respect to
w, we have

(1.8) P.Bi=0,
where ,
_Ologp oy OU!
(1.9) Pﬂ——?uT— and Bj”— auj .1)

Differentiating (1.8) once more covariantly, we obtain

(1.10) Pu; vBi*Bi’ + p Hjii=0
where .
. o“u* 2 D+ -uf i
(1.11) Hj»= P +Bi*Bif{ip} — Bi{it} -
Substituting

Pll: v=¢guv+f7mov ’
into (1.10) and taking account of (1.8), we have

(1.12) 99+ PuH =0
Contracting ¢, we have, from (1.12),
= n———ll P9 Hai
then (1.12) becomes
(1.13) puMi*=0,
where
(1.14) Mji#=Hip~— " Hiitgye.

But we know, on the other hand, that the M;;* are vectors normal
to the hypersurface with respect to the index ¢, and p, is a vector
also normal to the hypersurface, so that we conclude from (1.13) that

1) For the notations, see K. Yano, Sur les équations de Gauss dans la géométrie
conforme des espaces de Riemann, Proc. 15 (1939), 247-252 and Sur les équations de
Codazzi dans la géométrie conforme des espaces de Riemann, Proc. 15 (1939), 340-344.
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(1.15) M;*=0

px not being identically zero. Thus we have the

Theorem II. If the conformal transformation (0.2) is a concircular
one, the hypersurfaces p=const. are totally umbilical.

We shall call these hyperfaces p-hypersurfaces.

We shall now differentiate

(1.16) s u=904+p'pu
covariantly, then we obtain
Phs =500kt 0%, put s -
Substituting (1.2) and (1.16) in the above equations, we find
P w v =985+ (@0l +0'0,) 0+ P Y9+ Pup) .

Commutating # and » and subtracting, we obtain

(1.17) p“RfIw,,=3ﬁ,¢'; v—aﬂil': ot 5[’?#35_?"101'32 .
Multiplying (1.17) by p; and summing up for the index 1, we have
Pub:v—0; n=0,

because of the identity
PaP Rlos = 00" Riap =0 .
Multiplying these equations by p* and summing up for #, we obtain

A
(1.18) G, =Ll p
Pt

We put next 1=y in (1.17) and sum up, then we find
P°Ry=m—1)(¢-pu—¢. ).
Substituting (1.18) in these equations, we obtain finally

(1.19) Rip*=(n— 1)(¢— L“—’Zu—)/" ,
Paf

which shows that the vector g* is in a Ricci-direction, thus we have the

Theorem III. If the conformal tramsformation (0.2) is a con-
circular one, the p-curves are Ricci-curves.

§2. In the preceding paragraph, we have seen that there exists,
in our Riemannian space, a family of ! totally umbilical hypersurfaces
the orthogonal trajectories of which are geodesic Rieci-curves. In the
present paragraph, we shall show that if these geometrical conditions
are satisfied, our Riemannian space admits at least a solution of the
partial differential equations (1.2).

Let us choose a coordinate system in which #”=const. defines the
family of totally umbilical hypersurfaces and w‘=const. (4,7, k,...=
1,2,3,...,n—1) define the orthogonal trajectories of the totally umbilical
hypersurfaces.
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Then we have at first
(2-1) Ini=0gin=0.
The curves defined by
u?=const. ... u"'=const. u*=u",

u'=const.
being geodesics, we have
d . "
d du? du* dw _  du?
du™ du Rty du™ du™ du™

hence
{}=a-8
from which we obtain

T — 1 ia agan agan agmt )_
2.2 ) =0 = -
22) {en} or 2 g ( au” ou™ ou*

On account of the equations g*=0 and g;,=0, we have, from (2.2),

0Gnn _
ou’

These equations show that the function g,, must be of the form
(2.3) nn = Onn(U") «

The hypersurfaces deﬁned by w'=u!, u?=
being totally umbilical, we have

LU =yt u™=const.

2.4) Bi= _j
ou'
" %ut A
@5)  Hyi= auf.guk + 2 S-S ou! v i) =gaH.

From (2.4) and (2.5), we find
(2.6) {4} oA} =0xH".
Putting A=n in this equation, we find

nY — n 1 na agaj agak agk ) —_ n
2.7 iy = 'kH or — (—_“ 4 et I = i H".
( ) {]k} g.1 2 g a ke a 7 a a gl

On account of the relations g”=0 and g,;=0, we have, from (2.7),

(2.8) — o g

The equations (2.8) show that the functions g;; have the form®
(2.9) 9= (W)finw?) .

1) Cf. K. Yano: Conformally separable quadratic differential forms. Proc. 16

(1940), 83-86.
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The equations (2.1), (2.3) and (2.9) show that the fundamental
quadratic differential form ds?=g, du“du’ must be written as

(2.10) d&2 = o(uX) fi(w))duw du* + g,..(u™)durdu™ .

We know moreover that the curves defined by “u'=const., ...,
u" '=const. u"=u" are Ricci-curves. We have then the equations of
the form

2 dut _ | dut

“dur T dur’
from which we find .

R}1l= “Rhl-= 0 ’
or

(2.11) R;,=0.

To calculate the components R;, of the Ricci-tensor, we shall,

taking account of (2.10), write down the values of the Christoffel
symbols as follows :

i _1 } af af.,,, af;'],; 1 -Blogcr 1 -Blogo
({i)=—fo( Jai Yok _ i)y~ 5 +-53 28
Gy =2 S T o aw')+ 27wk 2 ° ow
—_l'_fiaalog‘;dj.:ik)
2 ou
(212) 1 1 ,.0log 1 2log
LA o ””—d i .:.' = ”i. _—_ oai.’
{Jk} 2g ou™ Gk {1 } { 1} 2 our J
(=0, {Ry={m}=0, (n}=lgmlem,
2 ou
where fiof;=8 and g’m=;1_ .
We have then "

Rin=Ripy=Rip;= 203 _ 2} Ly a ay 14y
ow ou™

_1 2%logs _n—1 ?Plogs , 1 aloga{,-_}__l_ aloga{j,}
2 oudur 2 owrowt 2 owr 2 ouwwr ¢
—2—n Plogs
2  owour
The above equations and (2.11) show that
(2.13) o(u?) =g(u)h(u™),
then the fundamental form must be of the form
(2.14) ds?= o (u™)f(u)dwdu® + gpn(u™)durdu™ .V

The fundamental form being reduced to the form (2.14), we shall

1) A. Fialkow: Conformal geodesics, loc. cit. p. 471.
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now consider a function p(u™) defined by

2.15) log p=—log [ VS Igunt) du”
then we have
/
Pu=— Y. 20nn 0>
j V G nn du™
;dn gmt+0 Zg,:;n 'l/
Pusv=—rg—2mn__sngn— o+ L %mm _ gnfdy

( S'l/ 0Gnn du")z :

o Vogm [(1 dlogs 1 dlog Tnn
P/l: v pﬂpu - " L(E du"‘ + 2 )5"3” {Aw}]
V 0Gun AU

Putting ¢=j, v=Fk; p=j, v=n; p=n, v=n respectively and taking
account of (2.12), we have

2V 0Gnn §1/ G AU™ 51/ Gnn AU™

1/‘7g'rm g™ d IOg a

Pi: 6 PiPr= — d Oik »
251/ag,m du™ w
Lj n"‘Pan=0 ’
Pr:n—PnPn=— 1/0'g'rm rl leg” +_1_ dloggrm __l_gmu dgmt:l

SVE,Zdu"Lz du™ 2  du 2 du™

= — 'l/agm, gnn d(lzog'"d Gnm +
Zj'l/og,m du™ w

These equations show that

V 0Gum o dlog o
2S1/ 0Gm dU™ du

Thus we have proved that the function defined by (2.15) is a
solution of the partial differential equations (1.2). Thus we have the

Theorem IV. A mnecessary and sufficient condition that a Rieman-
nian space admit a solution of the partial differential equations (1.2)
8 that the Riemamniom space contain a family of totally umbilical
hypersurfaces whose orthogonal trajectories are geodesic Ricci-curves.

Remark. The differential equations of a generalized circle defined
by the present author® are given by

OCp;v—Ppfy=— G -

1) This function was suggested to the author by Prof. A. Kawaguchi.

2) K. Yano, Sur les circonférences généralisées dans les espaces 4 connexion con-
forme, Proc. 14 (1938), 329-332.
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Mul | Sut  Swr Sw 1 out, ou* ow 1 su”
+ ) + R i - R’al’ =0°
oF | os o2 o m—2 a8 ™ as o5 n—2 " os

These equations show that if a curve belongs to any two of the
following classes of curves, it belongs also to the third:

(I) geodesic circles (II) Ricci-curves (III) generalized circles.

The p-curves belong to the first and the second eclass, then they
belong also to the third, that is to say, the p-curves may be regarded
as generalized circles.



