117. On Linear Functions of Abelian Groups.

By Kôshichi Toyoda.
Harbin Technical College, Manchoukou.
(Comm. by M. Fujiwara, m.I.A., Dec. 12, 1940.)

1. Let a set G of elements $a_{i}, b_{i}, c_{i} \ldots \ldots,(i=1,2, \ldots, n)$, satisfy the following axioms:
(1) There exists an operation in G which associates with each class of n elements $a_{1}, a_{2}, \ldots, a_{n}$ of G an $(n+1)$-th element a_{0} of G, i. e.,

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{0}
$$

(2) The operation satisfies the associative law

$$
\begin{aligned}
& \left(\left(a_{1}, a_{2}, \ldots, a_{n}\right), \quad\left(b_{1}, b_{2}, \ldots, b_{n}\right), \quad \ldots \ldots, \quad\left(d_{1}, d_{2}, \ldots, d_{n}\right)\right) \\
= & \left(\left(a_{1}, b_{1}, \ldots, d_{1}\right), \quad\left(a_{2}, b_{2}, \ldots, d_{2}\right), \ldots \ldots, \quad\left(a_{n}, b_{n}, \ldots, d_{n}\right)\right) .
\end{aligned}
$$

(3) There exists at least one unit element 0 such that

$$
(0,0, \ldots, 0)=0
$$

(4) For any given elements a, b, each of the equations

$$
(x, a, 0, \ldots, 0)=b \quad \text { and } \quad(a, y, 0, \ldots, 0)=b
$$

has a unique solution with respect to the unknown x and y respectively.
We know ${ }^{1}$ that the mean value of n real numbers $x_{1}, x_{2}, \ldots, x_{n}$, say,

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

satisfies the above axioms (1), (2), (4), and, in place of (3), the axiom : "every element is unit element," and the symmetrical condition. We shall consider the converse problem which is answered as follows:

Theorem ${ }^{2)}$. The set G forms an abelian group with respect to the new operation which is defined by the equation

$$
x+y=(a, b, 0, \ldots, 0),
$$

assuming that $x=(a, 0,0, \ldots, 0)$ and $y=(0, b, 0, \ldots, 0)$.
Moreover, the operation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of G is expressed as a linear function of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\begin{gathered}
\left(x_{1}, x_{2}, \cdots, x_{n}\right)=A_{1} x_{1}+A_{2} x_{2}+\cdots+A_{n} x_{n} \\
A_{i} A_{k}=A_{k} A_{i}, \quad(i, k=1,2, \ldots, n)
\end{gathered}
$$

[^0]where A_{1}, A_{2} denote automorphisms of G and $A_{3}, A_{4}, \ldots, A_{n}$ denote homomorphisms of G.
2. In the following lines, we shall give the proof for the above theorem.

Lemma 1. If we suppose

$$
\begin{aligned}
& (p, 0,0, \ldots, 0)=(b, r, 0, \ldots, 0) \\
& (q, 0,0, \ldots, 0)=(b, s, 0, \ldots, 0)
\end{aligned}
$$

then it follows that

$$
(p, s, 0, \ldots, 0)=(q, r, 0, \ldots, 0)
$$

Proof.

$$
\begin{aligned}
& ((p, s, 0, \ldots, 0), \quad 0,0, \ldots, 0) \\
= & ((p, s, 0, \ldots, 0), \quad(0,0,0, \ldots, 0), \ldots \ldots, \quad(0,0,0, \ldots, 0)) \\
= & ((p, 0,0, \ldots, 0), \quad(s, 0,0, \ldots, 0), 0,0, \ldots, 0) \\
= & ((b, r, 0, \ldots, 0), \quad(s, 0,0, \ldots, 0), 0,0, \ldots, 0) \\
= & ((b, s, 0, \ldots, 0), \quad(r, 0,0, \ldots, 0), 0,0, \ldots, 0) \\
= & ((q, 0,0, \ldots, 0), \quad(r, 0,0, \ldots, 0), 0,0, \ldots, 0) \\
= & ((q, r, 0, \ldots, 0), \quad 0,0, \ldots, 0) .
\end{aligned}
$$

Hence, we get
Theorem 1. The set G forms an abelian group with respect to the new operation

$$
(a, 0,0, \ldots, 0)+(0, b, 0, \ldots, 0)=(a, b, 0, \ldots, 0)
$$

Proof. If we put

$$
\begin{aligned}
& x=(a, 0,0, \ldots, 0)=\left(0, a^{\prime}, 0, \ldots, 0\right), \\
& y=(b, 0,0, \ldots, 0)=\left(0, b^{\prime}, 0, \ldots, 0\right), \\
& z=(c, 0,0, \ldots, 0)=\left(0, c^{\prime}, 0, \ldots, 0\right),
\end{aligned}
$$

then, by means of Lemma 1 ,

$$
\begin{aligned}
x+y & =\left(a, b^{\prime}, 0, \ldots, 0\right)=\left(a^{\prime}, b, 0, \ldots, 0\right) \\
& =y+x
\end{aligned}
$$

Also, putting

$$
\begin{aligned}
& x+y=(p, 0,0, \ldots, 0)=\left(0, p^{\prime}, 0, \ldots, 0\right), \\
& y+z=(q, 0,0, \ldots, 0)=\left(0, q^{\prime}, 0, \ldots, 0\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& (p, 0,0, \ldots, 0)=\left(b, a^{\prime}, 0, \ldots, 0\right), \\
& (q, 0,0, \ldots, 0)=\left(b, c^{\prime}, 0, \ldots, 0\right),
\end{aligned}
$$

whence, by means of Lemma 1 ,

$$
\left(p, c^{\prime}, 0, \ldots, 0\right)=\left(q, a^{\prime}, 0, \ldots, 0\right)
$$

Therefore, we obtain

$$
\begin{aligned}
(x+y)+z & =\left(p, c^{\prime}, 0, \ldots, 0\right)=\left(a, q^{\prime}, 0, \ldots, 0\right) \\
& =x+(y+z)
\end{aligned}
$$

Consequently, we can prove that G forms an abelian group.
3. Next, we shall show that the operation of G becomes a linear function in the space G.

Lemma 2.

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)+\left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right) \\
= & \left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Proof. If we put

$$
\begin{aligned}
& x_{k}=\left(a_{k}, 0,0, \ldots, 0\right), \text { for } k=1,2, . ., n \text { and } k \neq i, \\
& x_{k}=\left(0, b_{k}, 0, \ldots, 0\right), \text { for } k=i,
\end{aligned}
$$

then it follows that

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) \\
= & \left(\left(a_{1}, 0,0, \ldots, 0\right), \quad\left(a_{2}, 0,0, \ldots, 0\right), \ldots \ldots, \quad\left(a_{i-1}, 0,0, \ldots, 0\right),\right. \\
& \left.(0,0,0, \ldots, 0), \quad\left(a_{i+1}, 0,0, \ldots, 0\right), \ldots \ldots, \quad\left(a_{n}, 0,0, \ldots, 0\right)\right) \\
= & \left(\left(a_{1}, a_{2}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right), \quad 0,0, \ldots, 0\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right) \\
= & \left(0,0, \ldots, 0, \quad\left(0, b_{i}, 0, \ldots, 0\right), 0, \ldots, 0\right) \\
= & \left(0, \quad\left(0,0, \ldots, 0, b_{i}, 0, \ldots, 0\right), \quad 0,0, \ldots, 0\right) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)+\left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right) \\
= & \left(\left(a_{1}, a_{2}, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_{n}\right),\left(0,0, \ldots, 0, b_{i}, 0, \ldots, 0\right), 0,0, \ldots, 0\right) \\
= & \left(\left(a_{1}, 0,0, \ldots, 0\right), \quad\left(a_{2}, 0,0, \ldots, 0\right), \ldots \ldots, \quad\left(a_{i-1}, 0,0, \ldots, 0\right),\right. \\
& \left.\left(0, b_{i}, 0, \ldots, 0\right), \quad\left(a_{i+1}, 0,0, \ldots, 0\right), \ldots \ldots,\left(a_{n}, 0,0, \ldots, 0\right)\right) \\
= & \left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Lemma 3.

$$
\begin{aligned}
& \left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right)+\left(0,0, \ldots, 0, y_{i}, 0, \ldots, 0\right) \\
= & \left(0,0, \ldots, 0, x_{i}+y_{i}, 0, \ldots, 0\right) .
\end{aligned}
$$

Proof. If we put

$$
\begin{aligned}
& x_{i}=\left(a_{i}, 0,0, \ldots, 0\right), \\
& y_{i}=\left(0, b_{i}, 0, \ldots, 0\right),
\end{aligned}
$$

then it follow that

$$
\begin{aligned}
& \left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right)+\left(0,0, \ldots, 0, y_{i}, 0, \ldots, 0\right) \\
= & \left(0,0, \ldots, 0, \quad\left(a_{i}, 0,0, \ldots, 0\right), \quad 0, \ldots, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(0,0, \ldots, 0, \quad\left(0, b_{i}, 0, \ldots, 0\right), 0, \ldots, 0\right) \\
= & \left(\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right), 0,0, \ldots, 0\right) \\
& +\left(0,\left(0,0, \ldots, 0, b_{i}, 0, \ldots, 0\right), 0,0, \ldots, 0\right) \\
= & \left(\left(0,0, \ldots, 0, a_{i}, 0, \ldots, 0\right), \quad\left(0,0, \ldots, b_{i}, 0, \ldots, 0\right), 0,0, \ldots, 0\right) \\
= & \left(0,0, \ldots, 0, \quad\left(a_{i}, b_{i}, 0, \ldots, 0\right), \quad 0, \ldots, 0\right) \\
= & \left(0,0, \ldots, 0, x_{i}+y_{i}, 0, \ldots, 0\right) .
\end{aligned}
$$

Consequently, we obtain
Theorem 2. The operation of G is expressed as a linear function in the space G such that

$$
\begin{gathered}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k=1}^{n} A_{k} x_{k}, \\
A_{i} A_{k}=A_{k} A_{i}, \quad(i, k=1,2, \ldots, n),
\end{gathered}
$$

where A_{1}, A_{2} denote automorphisms of G and $A_{2}, A_{4}, \ldots, A_{n}$ denote homorphisms of G.

Theorem $3^{1)}$. Let a function $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n real numbers x_{1}, x_{2}, \ldots, x_{n} satisfy the above four axioms (1), (2), (3), (4) and be continuous $^{2)}$ with respect to every component x_{i} in a domain $|x| \leqq \alpha, \quad(i=1$, $2, \ldots, n$). Then, the function is given by the expression such that

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f^{-1}\left(\lambda_{1} f\left(x_{1}\right)+\lambda_{2} f\left(x_{2}\right)+\cdots+\lambda_{n} f\left(x_{n}\right)\right),
$$

assuming that $\lambda_{i},(i=1,2, \ldots, n)$, denote some real numbers under the additional conditions $\lambda_{1} \neq 0, \lambda_{2} \neq 0$, and that $y=f(x)$ denotes a onevalued continuous function of a real number x and possesses a onevalued inverse continuous function $x=f^{-1}(y)$.
4. Let a set G of elements a, b, c, \ldots, satisfy the following axioms.
(1) For every pair of elements a, b, the product (a, b) of G determines uniquely a third element c in G, i. e., $(a, b)=c$.
(2) For two given elements a (or b) and c, the equation $(a, b)=c$ can be solved by b (or a) in G.
(3) Let a, b, p and q be arbitrary four elements in G. If the simultaneous equations

$$
\begin{aligned}
& (p, b)=(a, r), \\
& (q, b)=(a, s),
\end{aligned}
$$

hold, then it follows that

$$
(p, s)=(q, r) .
$$

Then, we have

[^1]Theorem $4^{1)}$. The set G forms an abelian group with respect to the new operations

$$
(x, b)+(a, y)=(x, y)
$$

where a, b denote any elements in G.
Proof. We can prove in the same way as Theorem 1.
Corollary. Let a continuous function (x, y) of two real variables x, y satisfy the above three axioms (1), (2), (3). Then, the function (x, y) is expressed as follows:

$$
(x, y)=f(\varphi(x)+\psi(y))
$$

where f, φ, ψ denote topological transformations.
Theorem 5^{22}. If we introduce two new operations

$$
(x, b)+(a, y)=(x, y) \quad \text { and } \quad\left(x, b^{\prime}\right) *\left(a^{\prime}, y\right)=(x, y)
$$

into G, then we have

$$
x * y=x+y-\left(a^{\prime}, b^{\prime}\right)
$$

Proof. By the definitions, we have

$$
\begin{aligned}
& \left(x, b^{\prime}\right)=(x, b)+\left(a, b^{\prime}\right) \\
& \left(a^{\prime}, y\right)=\left(a^{\prime}, b\right)+(a, y)
\end{aligned}
$$

whence

$$
\begin{aligned}
\left(x, b^{\prime}\right) *\left(a^{\prime}, y\right) & =(x, y)=(x, b)+(a, y) \\
& =\left\{\left(x, b^{\prime}\right)-\left(a, b^{\prime}\right)\right\}+\left\{\left(a^{\prime}, y\right)-\left(a^{\prime}, b\right)\right\} \\
& =\left(x, b^{\prime}\right)+\left(a^{\prime}, y\right)-\left\{\left(a^{\prime}, b\right)+\left(a, b^{\prime}\right)\right\} \\
& =\left(x, b^{\prime}\right)+\left(a^{\prime}, y\right)-\left(a^{\prime}, b^{\prime}\right)
\end{aligned}
$$

(4) Let a, b, p and q be arbitrary four elements in G. If the simultaneous equations

$$
\begin{aligned}
& (p, a)=(b, r), \\
& (q, a)=(b, s),
\end{aligned}
$$

hold, then it follows that

$$
(p, s)=(q, r)
$$

Then, we have
Theorem 6. The set G forms an abelian group with respect to the new operation

$$
(a, 0)+(0, b)=(a, b)
$$

Moreover, the operation (x, y) of G becomes a linear function of x, y in the space G such that

$$
(x, y)=A x+B y
$$

where A and B denotes automorphism of G. But, A and B are not necessarily commutative.

Proof. We can proceed in the same way as Theorems 1, 2, 3.
1), 2) K. Toyoda, loc. cit.

[^0]: 1) This result is due to the remark of Mr. M. Takasaki.
 2) K. Toyoda, On Axioms of Mean Transformations and Automorphic Transformations of Abelian Groups, Tôhoku Math. Journal, 47 (1940), pp., 239-251.
 K. Toyoda, On Affine Geometry of Abelian Groups, Proc. 16 (1940), 161-164.
[^1]: 1) K. Toyoda, loc. cit.
 2) Van der Waerden, Vorlesungen über kontinuierliche Gruppen, (1929). L. Pontrjagin, Topological groups, (1939).
