414 [Vol. 17,

90. On the Behaviour of an Inverse Function of a Meromorphic Function at its Transcendental Singular Point.

By Masatsugu Tsuji.

Mathematical Institute, Tokyo Imperial University.

(Comm. by T. Yosie, M.I.A, Nov. 12, 1941.)

Let w=f(z) be a meromorphic function for $|z|<\infty$ with a transcendental singularity at $z=\infty$ and its inverse function $z=\varphi(w)$ have a transcendental singularity ω with w=0 as its projection on the w-plane. Denote Δ the set of values taken by $z=\varphi(w)$ which defines the ρ -neighbourhood of an accessible boundary point ω of the Riemann surface F of $z=\varphi(w)$. Δ is a domain on the z-plane bounded, in general, by an enumerable infinity of analytic curves. $|w|=|f(z)|<\rho$ in Δ and $|w|=\rho$ on the boundary of Δ . Let z_0 be a point in Δ . The common part of Δ and $|z-z_0|< r$ consists of a certain number of connected domains. Let Δ_r be one of such domains which contains z_0 . The boundary of Δ_r consists of curves of three types: $\{a_i^{(r)}\}$, $\{b_i^{(r)}\}$, $\{c_i^{(r)}\}$, where $a_1^{(r)}$, $a_2^{(r)}$, ..., $a_{n_r}^{(r)}$ are circular arcs on $|z-z_0|=r$, $b_1^{(r)}$, $b_2^{(r)}$, ..., $b_{m_r}^{(r)}$ are the parts of the boundary of Δ which meet $|z-z_0|=r$, and $c_1^{(r)}$, $c_2^{(r)}$..., $c_{n_r}^{(r)}$ are the closed curves which are the boundaries of holes in Δ_r . We put

$$\Lambda(r) = p_r = \text{number of holes in } \Delta_r. \tag{1}$$

Let F_r correspond to A_r on F and A(r) be the area of F_r and put

$$S(r) = \frac{A(r)}{\pi \rho^2} \ . \tag{2}$$

A(r) is an increasing function of r and is continuous except at most an enemerable infinity of points $\{a_i\}$, where $A(a_i-0)=A(a_i)$. Let $A_i^{(r)}$, $B_i^{(r)}$, $C_i^{(r)}$ correspond to $a_i^{(r)}$, $b_i^{(r)}$, $c_i^{(r)}$ on F_r and $L_i^{(r)}$ be the length of $A_i^{(r)}$ and put $L(r)=L_1^{(r)}+L_2^{(r)}+\cdots+L_{n_r}^{(r)}$. We will show that

$$\lim_{r \to \infty} A(r) = \infty \tag{3}$$

and there exists a sequence $\{r_n\}$ tending to infinity, such that

$$\frac{L(r)}{S(r)} \to 0$$
, when $r = r_n \to \infty$. (4)

In the following we consider only such $r=r_n$.

We will prove (3) and (4) by modifying slightly Mr. Noshiro's¹⁾

¹⁾ K. Noshiro: On the singularities of analytic functions. Japanese Journal of Mathematics, 17 (1940), 37-96.

proof. As well known, there exists a curve Γ in Δ tending to infinity, such that $\lim f(z)=0$, when z tends to infinity on Γ . Since one of $a_i^{(r)}$, $a_{i_0}^{(r)}$ say, intersects Γ , we have $\frac{\rho}{2} \leq L_{i_0}^{(r)} \leq L(r)$ for $r \geq r_0$. Putting $\theta_r = a_1^{(r)} + a_2^{(r)} + \cdots + a_{n_n}^{(r)}$, we have for $r \geq r_0$

$$\left(rac{
ho}{2}
ight)^2 \! \le \left(L(r)
ight)^2 \! = \! \left(\int_{ heta_r} \! |f'(z)| \, r d heta
ight)^2 \! \le 2\pi r \! \int_{ heta_r} \! |f'(z)|^2 \, r d heta \! = \! 2\pi r \! \left(rac{dA(r)}{dr}
ight)_-$$

where $\left(\frac{dA(r)}{dr}\right)_{-}$ denotes the derivative on the left. Hence if $a_i \ge a_{i_0} \ge r_0$

$$rac{
ho^2}{8\pi}\!\int_{a_i}^{a_{i+1}}\!rac{dr}{r} \leq A(a_{i+1}) - A(a_i+0) \leq A(a_{i+1}) - A(a_i)$$
 ,

so that for $r \geq a_{i_0}$, we have

$$\frac{\rho^2}{8\pi} \int_{a_{i_0}}^r \frac{dr}{r} \leq A(r) - A(a_{i_0}) \leq A(r)$$

whence $\lim_{r\to\infty}A(r)=\infty$. To prove (4) suppose that $L(r)>[A(r)]^{\frac{1}{2}+\frac{\varepsilon}{2}}$ ($\varepsilon>0$) on a set E. We take off all $\{a_i\}$ from E and the remaining set be denoted by E_0 which consists of open intervals $I_n=(a_n,\ a'_n)$. Since on I_n , $\frac{A^{1+\varepsilon}(r)}{2\pi r} \leq \frac{L(r)^2}{2\pi r} \leq \frac{dA(r)}{dr}$, $\frac{1}{2\pi}\sum_n\int_{I_n}\frac{dr}{r} \leq \sum_n\int_{I_n}\frac{dA}{A^{1+\varepsilon}}=\frac{1}{\varepsilon}\sum_n\left(\frac{1}{A^\varepsilon(a_n+0)}-\frac{1}{A^\varepsilon(a'_n)}\right)\leq \frac{1}{\varepsilon}\sum_n\left(\frac{1}{A^\varepsilon(a_n)}-\frac{1}{A^\varepsilon(a_n)}\right)\leq \frac{1}{\varepsilon A^\varepsilon(a_1)}$ Hence $\int_E\frac{dr}{r}=\int_{E_0}\frac{dr}{r}<\infty$, so that there exists a sequence $r_n\to\infty$ such that $L(r_n)\leq [A(r_n)]^{\frac{1}{2}+\frac{\varepsilon}{2}}$ or $\frac{L(r_n)}{S(r_n)}\to 0$, which proves (4). Let D_1 , D_2 , ..., D_q $(q\geq 2)$ be q simply connected domains in $|w|<\rho$ which have no common points with each other and D be any one of D_i .

The part of F_r which lies above D consists of a certain number of connected pieces which are of two types. Those pieces which have no relative boundaries in D are called islands, and the other pieces are called peninsulas. If all islands above D which are simply connected have at least μ sheets, then F_r is called μ -ply ramified above D. Then we will prove the following theorem.

Theorem. If F_r ramifies μ_k -ply above D_k (k=1, 2, ..., q), then

$$\sum_{k=1}^{q} \left(1 - \frac{1}{\mu_k} \right) \le 1 + \lim_{r \to \infty} \frac{\Lambda(r)}{S(r)} \le 2.$$
 (5)

(5) contains K. Kunugui's theorem²⁾, that $\sum_{k=1}^{q} \left(1 - \frac{1}{\mu_k}\right) \leq 2$ and K.

²⁾ K. Kunugui: Sur des fonctions méromorphes et uniformes, (which will appear in the Japanese Journal of Mathematics, 18 (1941)).

Noshiro's theorem³⁾, that $\sum_{k=1}^{q} \left(1 - \frac{1}{\mu_k}\right) \leq 1$, if Δ is simply connected.

Proof. We apply Ahlfors' theory of covering surfaces on F_r . We denote the circular disc $|w| \leq \rho$ by F_0 and Euler's characteristic of a domain D by $\rho(D)$ and $-\rho(D) = p(D)$ is called the simple multiplicity of D, which is +1, if D is simply connected, otherwise $p(D) \leq 0$. We denote the sum of the simple multiplicities of all islands D^i of F_r above D_k by $\bar{p}(D_k)$.

First we take off from F_r all the peninsulas above $D_1+D_2+\cdots+D_q$, then there remains a certain number of connected pieces $\sum F'_r$. From $\sum F'_r$ we take off all the islands D^i above $D_1+D_2+\cdots+D_q$, there remains a certain number of connected pieces $\sum \overline{F}_r$, so that

$$\sum F_r' = \sum D^i + \sum \bar{F}_r$$
.

Hence

$$\sum \rho(F_r') = \sum \rho(D^i) + \sum \rho(\overline{F}_r)$$

or
$$\sum_{k=1}^{q} \bar{p}(D_k) = \sum \rho(\bar{F}_r) - \sum \rho(F'_r) = \sum \rho^+(\bar{F}_r) - \sum \rho(F'_r) - N_1(\bar{F}_r)$$
$$\geq \sum \rho^+(\bar{F}_r) - \sum \rho^+(F'_r),$$

where $N_1(\bar{F}_r)$ is the number of simply connected pieces in $\sum \bar{F}_r$. We put $\bar{F}_0 = F_0 - (D_1 + D_2 + \cdots + D_q)$. By Ahlfors' fundamental theorem⁴⁾

$$\sum \rho^+(\bar{F}_r) \geq (q-1)S(\bar{F}_0) - hL(r)$$

where h is a constant and $S(\overline{F}_0) = \frac{\text{area of } \sum \overline{F}_r}{\text{area of } \overline{F}_0}$ and by Ahlfors' first covering theorem, $S(\overline{F}_0) \geq S(r) - hL(r)$, so that

$$\sum \rho^+(\overline{F}_r) \geq (q-1)S(r) - hL(r)$$
.

Considering the images of the peninsulas on the z-plane, we see easily, $\sum \rho^+(F'_r) \leq \Lambda(r)$. Hence

$$\sum_{k=1}^{q} \bar{p}(D_k) \geq (q-1) S(r) - \Lambda(r) - hL(r).$$

If F ramifies μ_k -ply above D_k , then

$$\sum_{k=1}^q \frac{1}{\mu_k} S(D_k) \geq \sum_{k=1}^q \bar{p}(D_k) \geq (q-1)S(r) - \Lambda(r) - hL(r).$$

Since by Ahlfors' first covering theorem, $S(D_k) \leq S(r) + hL(r)$ and L(r) = O(S(r)), we have

$$\sum_{k=1}^{q} \left(1 - \frac{1}{\mu_k} \right) \le 1 + \lim_{r \to \infty} \frac{\Lambda(r)}{S(r)} . \tag{6}$$

We will next prove $\overline{\lim}_{r\to\infty} \frac{\Lambda(r)}{S(r)} \leq 1$.

³⁾ K. Noshiro l. c. p. 95.

⁴⁾ L. Ahlfors: Zur Theorie der Überlagerungsflächen. Acta Math. 65 (1935).

Let F_r consist of a certain number of sheets $\Omega_1, \Omega_2, ..., \Omega_N$ and Ω_i be such a sheet whose boundary consists of $C_i^{(r)}$ and one part of $A_i^{(r)}$ which form holes in Ω_i .

The sum of the lengths of the boundaries of holes be denoted by L_i , then | area of $\Omega_i - \pi \rho^2$ | $< hL_i$, where h is a constant depending on F_0 only. Hence summing up only for such Ω_i we have

$$S(r) \ge \frac{\sum \text{area of } \Omega_i}{\pi \rho^2} \ge \Lambda(r) - hL(r),$$
 (7)

so that

$$\overline{\lim_{r\to\infty}}\frac{\varLambda(r)}{S(r)}\leq 1$$
.

Remark. Similarly as Ahlfors, we can prove the defect relation

$$\sum\limits_{k=1}^q \partial(D_k) + \sum\limits_{k=1}^q \vartheta(D_k) \leqq 1 + \lim\limits_{r o\infty} rac{A(r)}{S(r)} \leqq 2$$
 .