89. Note on the Kronecker Product of Representations of a Group.

By Masaru OSIMA.

Kochi Kotogakko.

(Comm. by T. TAKAGI, M.I.A., Nov. 12, 1941.)

The principal aim of this note is to prove the following Theorem 1. As an application we can prove a conjecture of R. Brauer-C. Nesbitt¹⁾ (Th. 5).

Let \mathfrak{G} be a group of finite order. We consider representations of \mathfrak{G} in an arbitrary field K.

Theorem 1. Let \mathfrak{G} be a group of finite order and R be its regular representation. If V is a representation of \mathfrak{G} of degree m, then

$$V imes R \cong \left(egin{array}{cc} R & 0 \ R \ 0 & R \ 0 & R \end{array}
ight)$$

where R appears m times.

Proof²⁾. We denote by $G_1, G_2, ..., G_t$ the elements of \mathfrak{G} . Let G be an element of \mathfrak{G} . If $GG_i = G_j$, then

$$R(G) = j \begin{pmatrix} i \\ 0 \\ * \vdots * \\ 0 \cdots 1 \cdots 0 \\ * \cdot * \\ 0 \end{pmatrix}$$

and

$$V(G) \times R(G) = \begin{pmatrix} 0 \\ * \vdots & * \\ 0 \cdots & V(G) & 0 \\ * & \cdot & * \\ 0 \end{pmatrix}.$$

If we put

$$P = \begin{pmatrix} V(G_1) & 0 \\ V(G_2) \\ \vdots \\ 0 & \dot{V}(G_t) \end{pmatrix}$$

then it follows from $GG_i = G_j$ that

¹⁾ R. Brauer-C. Nesbitt, On the modular characters of groups, Ann. of Math. 42 (1941), p. 579.

²⁾ If R is completely reducible, we can easily see the validity of this theorem by comparing the characters of the representations.

[Vol. 17,

$$P^{-1}(V(G) \times R(G))P = \begin{pmatrix} 0 \\ * & \vdots & * \\ 0 \cdots V(G_{j}^{-1}GG_{i}) & 0 \\ * & \cdot & * \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ * & \vdots & * \\ 0 \cdots E_{m} \cdots 0 \\ * & \cdot & * \\ 0 \end{pmatrix}$$

where E_m is the unit matrix of degree *m*. Hence we have

$$V \times R \cong E_m \times R \cong \left(\begin{array}{cc} R & 0 \\ R \\ 0 & R \end{array}\right)$$

where R appears m times.

Corollary. If V and W are representations of \mathfrak{G} of the same degree, then $V \times R \cong W \times R$.

Theorem 2^{1} . If V is a representation of \mathfrak{G} of degree m, then

$$mR^{2} \cong \left(egin{array}{cc} V & 0 \\ * & * \end{array}
ight).$$

Proof. Since

$$R \cong \left(\begin{array}{cc} 1 & 0 \\ * & * \end{array}\right)$$
$$T \times R \cong \left(\begin{array}{cc} V & 0 \\ \end{array}\right)$$

we obtain

$$V \times R \cong \left(egin{array}{cc} V & 0 \\ * & * \end{array}
ight).$$

Our theorem now follows readily from Theorem 1.

Let \mathfrak{G} be a group and \mathfrak{H} be its subgroup. If $G \to V(G)$ is a representation of \mathfrak{G} , then $H \to V(H)$; $H \in \mathfrak{H}$ is a representation of \mathfrak{H} , which we denote by $V(\mathfrak{H})$. Now we can extend Theorem 1 to the following

Theorem 3. Let \mathfrak{G} be a group and \mathfrak{H} be its subgroup of finite index. Let furthermore \mathbb{R}^* be the representation of \mathfrak{G} induced from the 1-representation of \mathfrak{H} . If V is a representation of \mathfrak{G} , then $V \times \mathbb{R}^* \cong V^*(\mathfrak{H})$ where $V^*(\mathfrak{H})$ is the representation of \mathfrak{G} induced from $V(\mathfrak{H})$.

Let $F_1, F_2, ..., F_l$ be distinct absolutely irreducible representations of \mathfrak{G} and $U_1, U_2, ..., U_l$ be corresponding directly indecomposable parts of \mathbb{R}^{33} .

Since

$$V \times R \cong \left(\begin{array}{cc} V \times U_1 & 0 \\ \vdots \\ 0 & V \times U_l \end{array}\right)$$

we have from Theorem 1

¹⁾ K. Shoda has already proved this theorem. See K. Shoda, Über die Invarianten endlicher Gruppen linearer Substitutionen im Körper der Charakteristik p, Jap. J. of Math. 17 (1940).

²⁾ We denote by mR the representation of \mathfrak{G} such that R appears m times on the diagonal.

³⁾ If R is completely reducible, then $U_x = F_x$.

No. 9.] Note on the Kronecker Product of Representations of a Group.

Theorem 4. Let V be a representation of \mathfrak{G} . $V \times U_x$ splits completely into U_1, U_2, \dots, U_l .

Corollary. Let V and W be representations of \mathfrak{G} which have the same irreducible constituents. Then $V \times U_x \cong W \times U_x$.

Proof. The characters of U_{λ} ($\lambda = 1, 2, ..., l$) are linearly independent. Hence the corollary is immediate.

Denote the character of F_x and U_x by $\varphi^{(x)}$ and $\eta^{(x)}$ respectively. From $\varphi^{(x)} \cdot \varphi^{(\lambda)} = \sum_{\mu} a_{x\lambda\mu} \varphi^{(\mu)}$ it follows that $\eta^{(\mu)} \cdot \varphi^{(\lambda')} = \sum_{x} a_{x\lambda\mu} \eta^{(x)}$ where $\varphi^{(\lambda')}$ is the character of the representation $F_{\lambda'}$ contragredient to F_{λ} . We obtain from Theorem 4

Theorem 5. Let $a_{x\lambda\mu}$ be the multiplicity of F_{μ} as irreducible constituent of $F_x \times F_{\lambda}$. $U_{\mu} \times F_{\lambda'}$ splits completely into $U_1, U_2, ..., U_l$ where U_x appears $a_{x\lambda\mu}$ times.

Corollary. Let $c_{\mu\nu}$ be the multiplity of F_{ν} as irreducible constituent of U_{μ} . U_1 appears $c_{\mu\nu}$ times in $U_{\mu} \times U_{\nu'}$ where $U_{\nu'}$ is the representation contragredient to U_{ν} .

1) See Brauer-Nesbitt, l.c.