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102. On Vector Lattice with a Unit, II.

By Kosaku YosIiDA and Masanori FUKAMIYA.
Mathematical Institute, Osaka Imperial University.
(Comm. by T. TAKAGI, M.I.A,, Dec. 12, 1941.)

§1. Introduction and the theorems. In a preceding note® one of
the authors gave a representation of the vector lattice with a unit to
obtain an algebraic proof of Kakutani-Krein’s lattice-theoretic char-
acterisation® of the space of continuous functions on a bicompact
Hausdorff space. The purpose of the present note is to extend the
result and to show that there exists a close analogy between the
structures of the vector lattice and the algebras as in the case of the
normed ring and the algebras®.

A vector lattice F is a partially ordered real linear space, some
of whose elements f are “ non-negative” (written f>> 0) and in which?

(V1): If f=0 and «a =0, then of = 0.

(V2): If f=0 and —f=0, then f=0.

(V3): If f=0 and g =0, then f+g=0.

(V4): E is a lattice by the semi-order relation f=>g¢g (f—g=0).

In this note we further assume the existence of a “unit” I>0
satisfying

(V5): For any feE there exists « >0 such that —al < f< al.

An element fe E is called “nilpotent” if n|f|<<I(n=1,2,...).
The set R of all the nilpotent elements f is called the “radical” of E.
Surely R constitutes a linear subspace of E. Moreover it is easy to see
that R is an “ideal” of E, viz. feRand |g|<|f| imply ge R. Here
we put as usual | f|=f"—f", fT=FV0=sup(f,0), /- =FA\0=inf(f,0).

Let N be a linear subspace of E. Then the linear congruence
a=b (mod. N) is also a lattice-congruence :

a=b, a’=b" (mod. N) implies ab=a’b’ (mod. N),

if and only if N is an ideal of E®. An ideal N is called “ non-trivial ”
if NX0,E. A non-trivial ideal N is called “ maximal” if it is con-
tained in no other ideal 3¢ E. Denote by 2t the set of all the maximal
ideals N of E. The residual class E/N of E mod. any ideal Ne®R is
“simple”, viz. E/N does not contain non-trivial ideals. It is proved
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below that simple vector lattice with a unit is linear-lattice-isomorphic
to the vector lattice of real numbers, the non-negative elements and
the unit being represented by non-negative numbers and the number
1. We denote by f(IN) the real number which corresponds to feE by
the linear-lattice-homomorphism E— E/N, NeR.

After these preliminaries we may state our

Theorem 1. The radical R coincides with the intersection ideal

Nef
The vector lattice =E/R is again a vector lattice with a unit

I. By the theorem 1 the intersection ideal A N of all the maximal
Ne®

ideals N of E is the _zero ideal and hence E does not contain nilpotent

element 2= 0. Thus & satisfies the “ Archimedean axiom ”:

(V6): order—limit—l—lf |=0 for all feF.
n-> oo n

Therefore, by the result of the preceding note, we may add a precision
to the theorem 1:

Theorem 2. By the correspondence f—f(N),E is linear-lattice-
isomorphically mapped on the vector lattice F(N) of real-valued bounded
fumctions on N such that i) f—Ff(N), i) I(N)+1 on N and ii)) F(RN)
is dense in the set of all the real-valued continuous functions ¢(N) on
N by the “norm?” |c¢ l=sup | e(N)|. Here the topology in N is defined by

N

calling open the set of all the points NeRN which satisfy |fu{lN)—
F N | <es, i=1,2, ..., m, where Npy NeR, ,>0, n and f{—I<f, <I)
are arbitrary.

The theorems 1 and 2 show the analogy to a fundamental theorem
in the theory of algebras, viz. the theorem stating that the residual
class of an algebra mod. its maximal nilpotent ideal is a direct sum of
total matric algebras.

§2. The proof of the theorem 1 may be obtained by the follow-
ing four lemmas.

Lemma 1. Let E be a simple vector lattice with a unit I, then
we must have E={al}, — oo <a<< oo,

Proof. E does not contain a nilpotent element =0, for otherwise
E would contain the non-trivial ideal No= §(lg| < 7!f|, 7<< ). Hence
9

E satisfies the Archimedean axiom (V6). Let E3f3yI for any 7.
Let a=info,d'T>f, f=supf, FI<f, then RIS f<al and a>f.
Hence (f—d8I)* 20, (f—oI)" 30 for f<<d<<a. Then the set Ny=
8(gl Z9(f—oI)*, 7<<) is a non-trivial ideal, contrary to the
9

hypothesis.

Lemma 2. For any non-trivial ideal N, there exists a maximal
ideal N> N,.

Proof. Let Ny Ny N, <+ < N, < -+, 7<<w, be a transfinite
sequence of non-trivial ideals. If » is a limit ordinal, define f=g
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(mod. N,) to mean f=g¢g (mod. N,) for some 7 <<w. That N, is a non-
trivial ideal follows from the fact that I=0 (mod. N,), 7 <<w. This
process defines a transfinite sequence of linear-lattice-congruence rela-
tions on E, each more inclusive than the last. Hence it cannot con-
tinue indefinitely. Therefore we would obtain the demanded maximal
ideal N> N,.

Lemma 3. We have RS /\ N.

Proof. Let f>0 and nf<I (n=1,2....), then for any Ne we
have n-f(N) < I(N)=1 (n=1,2,...) and hence f(@N)=0, that is, fe N.
Lemma 4. We have R 2 /\ N.

Proof. Let f>0 be not mlpotent then we have to show that
there exists an ideal NeN such that fé€ N. This may be proved as
follows.

Let n-f<£I Such an integer n>>1 surely exists, since f is not
nilpotent. We may assume that n - f 2= 1, since otherwise f€N for any
NeR. Thus p=I—(n-f)NI>0. For any positive integer m we do

not have m-p =1 If otherwise we would have ——1~~»I <I—-mnm-HANI
m

and hence

5 nef A=n-f A(1= 1)1,
which implies

®) n-f=(1- 71;)1

contrary to n-f=<I1 Thus the set No= §(|g| <7p,7<< ) is a non-
g
trivial ideal and hence there exists a maximal ideal Ns N, by the

lemma 2. Then O=p(N)=1—(n-f(N))Al, and thus f(N)>0, that
is, fEN.
The deduction of (2) from (1). From (1) we have

<n-f——(1— ;)I)/\lmfI:(n-f-—(l— -711-{>I>/\0 <o,

and hence, by the distributivity of the vector lattice,

(== LN AVo=(os-G ) 4L

. (1= I\ A= =(n-f—(1=1\1)

Thus (n f (1 m>I> AI=0. Putbd (n I (1 m>I> and assume

that b>0. By (V5) we have b <<al with a>1. Then 0 <<b=bAal,

and hence 0 << b ANI=<bAI contrary to bAI=0. Thus b=0, which
a

is equivalent to (2).

§$8. An example due to T. Nakayama. The following example
shows that the existence of the unit is important for the theorem 1.
Consider linear functions ax+p# with an indeterminate symbol x. We
put ax+p=rx+0 if, and only if, 1) a>d or 2) a=7 and B=>0. Then
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the totality of the vectors f=(ax+ B, agx+ P, -..) forms a vector lattice
by componentwise addition and componentwise order relation. Now,
consider the sublattice E consisting of those f such that almost all e;
are zero. This vector lattice possesses no unit. Further, if we ecall
an element ¢ nilpotent when n|g|<<f (n=1,2,...) for a certain >0,
then ¢ is nilpotent in E if and only if all its «; vanish and almost all
its B; vanish. On the other hand, the intersection of all the maximal
ideals in E' contains the totality of those f such that all its «; are
zero. This last property may be proved by the fact that a simple
vector lattice is linear-lattice-isomorphic to real numbers (proof similar
as in the lemma 1). In fact, let ¢=(ry, 7o, ---) With all 7,0 be € a
maximal ideal N, then, since E/N is isomorphic to real numbers, we
have (2z,0,0, ...)=dc (mod. N). Hence (x,0,0...)e N and similarly
0,z,0,0,...), (0,0,2,0,0,...), ... N. Thus if only a finite number of
o6+ B; 3 0, then (ayw+ By, ag+ By ---) e N. Let M denote the totality
of such elements. N/M is a maximal ideal of E/M. Since ny;<<ir;
for almost all 4, we have mc<<c;=(ry, 272 373, ---) (mod. M). Thus ¢
(mod. M) is contained in any maximal ideal of E/M and hence ¢
(mod. M)e N/M. Therefore ce N, contrary to the assumption.



