No. 10.]

102. On Vector Lattice with a Unit, II.

By Kôsaku Yosida and Masanori Fukamiya.

Mathematical Institute, Osaka Imperial University.

(Comm. by T. TAKAGI, M.I.A., Dec. 12, 1941.)

§ 1. Introduction and the theorems. In a preceding note¹⁾ one of the authors gave a representation of the vector lattice with a unit to obtain an algebraic proof of Kakutani-Krein's lattice-theoretic characterisation²⁾ of the space of continuous functions on a bicompact Hausdorff space. The purpose of the present note is to extend the result and to show that there exists a close analogy between the structures of the vector lattice and the algebras as in the case of the normed ring and the algebras³⁾.

A vector lattice E is a partially ordered real linear space, some of whose elements f are "non-negative" (written $f \ge 0$) and in which⁴⁾

- (V1): If $f \ge 0$ and $\alpha \ge 0$, then $\alpha f \ge 0$.
- (V2): If $f \ge 0$ and $-f \ge 0$, then f = 0.
- (V 3): If $f \ge 0$ and $g \ge 0$, then $f+g \ge 0$.
- (V4): E is a lattice by the semi-order relation $f \ge g$ $(f-g \ge 0)$.

In this note we further assume the existence of a "unit" I>0 satisfying

(V 5): For any $f \in E$ there exists $\alpha > 0$ such that $-\alpha I \le f \le \alpha I$.

An element $f \in E$ is called "nilpotent" if $n \mid f \mid < I(n=1, 2, ...)$. The set R of all the nilpotent elements f is called the "radical" of E. Surely R constitutes a linear subspace of E. Moreover it is easy to see that R is an "ideal" of E, viz. $f \in R$ and $|g| \le |f|$ imply $g \in R$. Here we put as usual $|f| = f^+ - f^-$, $f^+ = f \setminus 0 = \sup(f, 0)$, $f^- = f \wedge 0 = \inf(f, 0)$.

Let N be a linear subspace of E. Then the linear congruence $a \equiv b \pmod{N}$ is also a lattice-congruence:

 $a \equiv b$, $a' \equiv b' \pmod{N}$ implies $ab \equiv a'b' \pmod{N}$,

if and only if N is an ideal of E^{5} . An ideal N is called "non-trivial" if $N \neq 0$, E. A non-trivial ideal N is called "maximal" if it is contained in no other ideal $\neq E$. Denote by $\mathfrak N$ the set of all the maximal ideals N of E. The residual class E/N of E mod. any ideal $N \in \mathfrak N$ is "simple", viz. E/N does not contain non-trivial ideals. It is proved

¹⁾ K. Yosida: Proc. **17** (1941), 121-124. Cf. also M. H. Stone: Proc. Nat. Acad. Sci. **27** (1941), 83-87, and H. Nakano: Proc. **17** (1941), 311-317.

S. Kakutani: Proc. 16 (1940), 63-67. M. and S. Krein: C. R. URSS, 27 (1940), 427-430.

³⁾ I. Gelfand: Rec. Math. 9 (1941), 1-24. We here express our hearty thanks to Tadasi Nakayama for his discussions during the preparation of the present note. He also obtained another proof of the theorem 1 below by considering the embedding of "lattice-groups" in a direct product of linearly ordered lattice-groups. See his paper shortly to appear in these Proceedings.

⁴⁾ Small roman letters and small greek letters respectively denote elements ϵE and real numbers. We write f > 0 if $f \ge 0$ and $f \ne 0$.

⁵⁾ Garrett Birkhoff: Lattice Theory, New York (1940), 109.

below that simple vector lattice with a unit is linear-lattice-isomorphic to the vector lattice of real numbers, the non-negative elements and the unit being represented by non-negative numbers and the number 1. We denote by f(N) the real number which corresponds to $f \in E$ by the linear-lattice-homomorphism $E \to E/N$, $N \in \mathfrak{N}$.

After these preliminaries we may state our

Theorem 1. The radical R coincides with the intersection ideal \bigwedge N.

The vector lattice $\overline{E} = E/R$ is again a vector lattice with a unit \overline{I} . By the theorem 1 the intersection ideal $\bigwedge_{\overline{N} \in \overline{\mathfrak{N}}} \overline{N}$ of all the maximal

ideals \overline{N} of E is the zero ideal and hence \overline{E} does not contain nilpotent element $\neq 0$. Thus \overline{E} satisfies the "Archimedean axiom":

(V 6): order-limit
$$\frac{1}{n}|\bar{f}|=0$$
 for all $\bar{f} \in \bar{E}$.

Therefore, by the result of the preceding note, we may add a precision to the theorem 1:

Theorem 2. By the correspondence $\bar{f} \to \bar{f}(\bar{N})$, \bar{E} is linear-lattice-isomorphically mapped on the vector lattice $F(\bar{\mathbb{N}})$ of real-valued bounded functions on \bar{N} such that i) $\bar{f} \to \bar{f}(\bar{N})$, ii) $\bar{I}(\bar{N}) \pm 1$ on $\bar{\mathbb{N}}$ and iii) $F(\bar{\mathbb{N}})$ is dense in the set of all the real-valued continuous functions $c(\bar{N})$ on $\bar{\mathbb{N}}$ by the "norm" $\|c\| = \sup_{\bar{N}} |c(\bar{N})|$. Here the topology in $\bar{\mathbb{N}}$ is defined by calling open the set of all the points $\bar{N} \in \bar{\mathbb{N}}$ which satisfy $|\bar{f}_i(\bar{N}) - \bar{f}_i(\bar{N})| < \varepsilon_i$, i = 1, 2, ..., n, where \bar{N}_0 , $\bar{N} \in \bar{\mathbb{N}}$, $\varepsilon_i > 0$, n and $\bar{f}_i(-\bar{I} \leq \bar{f}_i \leq \bar{I})$ are arbitrary.

The theorems 1 and 2 show the analogy to a fundamental theorem in the theory of algebras, viz. the theorem stating that the residual class of an algebra mod. its maximal nilpotent ideal is a direct sum of total matric algebras.

§ 2. The proof of the theorem 1 may be obtained by the following four lemmas.

Lemma 1. Let E be a simple vector lattice with a unit I, then we must have $E = \{aI\}, -\infty < a < \infty$.

Proof. E does not contain a nilpotent element f=0, for otherwise E would contain the non-trivial ideal $N_0=\mathop{\mathcal{E}}(\mid g\mid \leq \eta\mid f\mid,\ \eta<\infty)$. Hence E satisfies the Archimedean axiom (V 6). Let $E\ni f \neq \gamma I$ for any γ . Let $\alpha=\inf \alpha', \alpha'I \geq f,\ \beta=\sup \beta',\ \beta'I \leq f,\ \text{then}\ \beta I \leq f \leq \alpha I$ and $\alpha>\beta$. Hence $(f-\delta I)^+ \neq 0$, $(f-\delta I)^- \neq 0$ for $\beta<\delta<\alpha$. Then the set $N_0=\mathop{\mathcal{E}}(\mid g\mid \leq \eta(f-\delta I)^+,\ \eta<\infty)$ is a non-trivial ideal, contrary to the hypothesis.

Lemma 2. For any non-trivial ideal N_0 there exists a maximal ideal $N > N_0$.

Proof. Let $N_0 \subset N_1 \subset N_2 \subset \cdots \subset N_{\eta} \subset \cdots$, $\eta \subset \omega$, be a transfinite sequence of non-trivial ideals. If ω is a limit ordinal, define $f \equiv g$

(mod. N_{ω}) to mean $f \equiv g \pmod{N_{\eta}}$ for some $\eta < \omega$. That N_{ω} is a non-trivial ideal follows from the fact that $I \not\equiv 0 \pmod{N_{\eta}}$, $\eta < \omega$. This process defines a transfinite sequence of linear-lattice-congruence relations on E, each more inclusive than the last. Hence it cannot continue indefinitely. Therefore we would obtain the demanded maximal ideal $N > N_0$.

Lemma 3. We have $R \subseteq \bigwedge_{N \in \mathbb{N}} N$.

Proof. Let f > 0 and nf < I (n=1, 2, ...), then for any $N \in \Re$ we have $n \cdot f(N) \le I(N) = 1$ (n=1, 2, ...) and hence f(N) = 0, that is, $f \in N$.

Lemma 4. We have $R \ge \bigwedge_{N \in \Re} N$.

Proof. Let f > 0 be not nilpotent, then we have to show that there exists an ideal $N \in \mathfrak{N}$ such that $f \in N$. This may be proved as follows.

Let $n \cdot f \leqq I$. Such an integer $n \geqq 1$ surely exists, since f is not nilpotent. We may assume that $n \cdot f \trianglerighteq I$, since otherwise $f \in N$ for any $N \in \Re$. Thus $p = I - (n \cdot f) \land I > 0$. For any positive integer m we do not have $m \cdot p \trianglerighteq I$. If otherwise we would have $\frac{1}{m} I \leqq I - (n \cdot f) \land I$ and hence

$$(1) n \cdot f \wedge I = n \cdot f \wedge \left(1 - \frac{1}{m}\right)I,$$

which implies

$$(2) n \cdot f \leq \left(1 - \frac{1}{m}\right)I,$$

contrary to $n \cdot f \nleq I$. Thus the set $N_0 = \underset{g}{\mathscr{E}}(\mid g \mid \leq \eta p, \eta < \infty)$ is a non-trivial ideal and hence there exists a maximal ideal $N \ni N_0$, by the lemma 2. Then $O = p(N) = 1 - (n \cdot f(N)) \wedge 1$, and thus f(N) > 0, that is, $f \in N$.

The deduction of (2) from (1). From (1) we have

$$\left(n \cdot f - \left(1 - \frac{1}{m}\right)I\right) \wedge \frac{1}{m}I = \left(n \cdot f - \left(1 - \frac{1}{m}\right)I\right) \wedge 0 \leq 0$$

and hence, by the distributivity of the vector lattice,

$$0 = \left\{ \left(n \cdot f - \left(1 - \frac{1}{m} \right) I \right) \wedge \frac{1}{m} I \right\} \vee 0 = \left(n \cdot f - \left(1 - \frac{1}{m} \right) I \right)^{+} \wedge \frac{1}{m} I.$$

Thus $\left(n \cdot f - \left(1 - \frac{1}{m}\right)I\right)^+ \wedge I = 0$. Put $b = \left(n \cdot f - \left(1 - \frac{1}{m}\right)I\right)^+$ and assume that b > 0. By (V 5) we have b < aI with a > 1. Then $0 < b = b \wedge aI$, and hence $0 < \frac{b}{a} \wedge I \le b \wedge I$, contrary to $b \wedge I = 0$. Thus b = 0, which is equivalent to (2).

§ 3. An example due to T. Nakayama. The following example shows that the existence of the unit is important for the theorem 1. Consider linear functions $ax + \beta$ with an indeterminate symbol x. We put $ax + \beta \ge \gamma x + \delta$ if, and only if, 1) $\alpha > \delta$ or 2) $\alpha = \gamma$ and $\beta \ge \delta$. Then

the totality of the vectors $f = (a_1x + \beta_1, a_2x + \beta_2, ...)$ forms a vector lattice by componentwise addition and componentwise order relation. Now, consider the sublattice E consisting of those f such that almost all a_i are zero. This vector lattice possesses no unit. Further, if we call an element g nilpotent when $n \mid g \mid < f (n=1, 2, ...)$ for a certain f > 0, then g is nilpotent in E if and only if all its a_i vanish and almost all its β_i vanish. On the other hand, the intersection of all the maximal ideals in E contains the totality of those f such that all its a_i are This last property may be proved by the fact that a simple vector lattice is linear-lattice-isomorphic to real numbers (proof similar as in the lemma 1). In fact, let $c = (\gamma_1, \gamma_2, ...)$ with all $\gamma_i \ge 0$ be $\bar{\epsilon}$ a maximal ideal N, then, since E/N is isomorphic to real numbers, we have $(2x, 0, 0, ...) \equiv \delta c \pmod{N}$. Hence $(x, 0, 0, ...) \in N$ and similarly $(0, x, 0, 0, ...), (0, 0, x, 0, 0, ...), ... \in N$. Thus if only a finite number of $a_i x + \beta_i \neq 0$, then $(a_1 x + \beta_1, a_2 x + \beta_2, ...) \in N$. Let M denote the totality of such elements. N/M is a maximal ideal of E/M. Since $n\gamma_i < i\gamma_i$ for almost all i, we have $nc < c_1 = (\gamma_1, 2\gamma_2, 3\gamma_3, ...)$ (mod. M). Thus c (mod. M) is contained in any maximal ideal of E/M and hence c (mod. M) $\in N/M$. Therefore $c \in N$, contrary to the assumption.