12. An Abstract Integral, VI.

By Masahiro NAKAMURA.

Mathematical Institute, Tohoku Imperial University, Sendai.

(Comm. by M. FUIIWARA, M.I.A., Feb. 12, 1942.)

The purpose of this paper is to give an integral, similar to that of H. Freudenthal¹⁾. Our integral is defined for the functions with domains in a general lattice and range in a metric commutative semigroup.

1. We begin by the definitions and notations²⁾:

[1.1] A is a metric commutative semi-group with zero elements whose operation is denoted by addition. And the addition is a contraction, i. e., $\delta(u+w, v+w) \leq \delta(u, v)$, where $\delta(u, v)$ is the distance between u and v.

[1.2] L is a lattice with zero element.

[1.3] f(x) is a one-valued function in L to A such as f(0)=0.

[1.4] A denumerable set $\{a_i\}=z(a)$ in L is called resolution of a if

1° $a_i > 0$, 2° $a_i \cap a_j = 0$ if $i \neq j$, 3° $\forall a_i = a$,

4° $\{a_i\}$ generates a Boolean algebra L(z(a)).

[1.5] Z(a) is the class of all resolutions z(a) of a.

[1.6] $z(a) \leq z'(a)$ if and only if $L(z(a)) \leq L(z'(a))$, the latter inequality being set implication.

[1.7] y(a) is a finite subset of z(a).

[1.8] Y(z(a)) is a class of all y(a) such that $y(a) \leq z(a)$.

[1.9] If Z(a) consists of only one trivial resolution $z(a) = \{a\}$, then a is called *trivially soluble*.

[1.10] $y(a) \leq y'(a)$ if and only if y'(a) includes y(a) as set.

$$[1.11] \quad f(y(a)) = \sum_{a_i \in y(a)} f(a_i).$$

Under above definitions we have clearly,

(1.12) Z(a) is a partially ordered system.

(1.13) Y(z(a)) is a Moore-Smith set.

[1.14] If f(y(a)) converges to $u \in A$ in the sense of Moore-Smith, then we denote u = f(z(a)).

2. Here we define an integral as follows:

[2.1] If f(z(a)) converges to a unique $v \in A$ in Z(a) in the sense of G. Birkhoff³⁾, we denote

¹⁾ H. Freudenthal, Proc. Ned. Akad. Wet. Amsterdam, 39 (1936).

^{2) []} indicates axiom and definition, () theorem.

³⁾ G. Birkhoff and L. Alaoglu, Ann. of Math., 41 (1940), 293-309.

An Abstract Integral, VI.

$$v = I(f:a) = \int_a f(dx)$$

and say that f(x) is *integrable at a*, and v is the *integral of f* at a. By the definitions 2.1 and 1.9 it is evident that

(2.2) If a is trivially soluble, then I(f:a)=f(a).

Furthermore, we have the additivity of the integral, that is (2.3) If f and g are integrable at a, then f+g is also and

$$I(f:a) + I(g:a) = I(f+g:a).$$

Proof: We put h(x) = f(x) + g(x). By the integrability of f and g f(z(a)) and g(z(a)) exist, and

$$f(y(a)) \in K(f(z(a)); \epsilon), \quad g(y(a)) \in K(g(z(a)); \epsilon)$$

for all $y(a) \ge y_0(a)$, where $K(w; \epsilon)$ is the sphere in A with center w and radius ϵ . Since addition is contraction, $f(y(a)) + g(y(a)) \in K(f(z(a)))$ $+g(z(a)); 2\epsilon)$. Hence we have

$$f(z(a))+g(z(a))=h(z(a))$$

Since f and g are integrable, z(a) has a successor z'(a) whose successors lie in $K(I(f:a); \epsilon)$. By the definition z'(a) has also a successor z''(a)whose all successors lie in $K(I(g:a); \epsilon)$. Thus for all $z(a) \ge z''(a)$ we have

$$f(z(a)) + g(z(a)) = h(z(a)) \in K(I(f:a); \varepsilon) + K(I(f:a); \varepsilon)$$
$$\leq K(I(f:a) + I(g:a); 2\varepsilon),$$

which proves the theorem.

If we assume that

[2.4] A has B as its operator-domain and B satisfies 1.1.

[2.5] $\delta(\alpha u, \alpha v) \leq \delta(0, \alpha) \cdot \delta(u, v).$

Then we have

(2.6) If f(x) is integrable at a, then af(x) is also and

$$I(af:a) = aI(f:a)$$

Incidentally, A satisfies 2.4 and 2.5, then we can replace 1.11 by [2.7] $f(y(a)) = \sum f(a_i)m(a_i)$, $a_i \in y(a)$, $m(a_i) \in B$.

In this case 2.3 and 2.6 hold also. We omit the proof.

3. In this section we suppose that

[3.1] L is a continuous geometry¹⁾.

J. von Neumann has proved that

(3.2) A denumerable set $\{a_i\}$ with $\forall a_i = a$ is a resolution of a if and only if $\{a_i\}$ is independent.

¹⁾ J. von Neumann, "Continuous Geometry," Princeton 1936.

(3.3) Let $\{a_i\}$ be independent and $\forall a_i = a$. If $z(a_i) = \{a_{ij}\}$, then $\{a_{ij}; i, j = 1, 2, ...\}$ is a resolution of a.

Next we prove that

(3.4) If g(x) = I(f:x) exists for all x then $g(a \cup b) + g(a \cap b) = g(a) + g(b)$.

It suffices to show the case: $a \cap b = 0^{1}$. Let $z(a) = \{a_i\}$, $z(b) = \{b_i\}$ and $\{c_i\}$ be the set sum of $\{a_i\}$ and $\{b_i\}$. Then $z(a \cup b) = \{c_i\}$ is a resolution of $a \cup b$ by 3.3. Hence $f(z(a \cup b)) = f(z(a)) + f(z(b))$. Since g(x) exists for $x = a \cup b$, and by 2.1 we get the theorem.

Furthermore we can prove the complete additivity, that is,

(3.5) If g(x) exists for all x, then $\sum g(a_i) = g(\bigvee a_i)$, where $\{a_i\}$ are independent.

Proof is similar to that of 3.4, hence we omit it.

1) G. Birkhoff, "Lattice Theory," New York 1940. Theorem 4.13, p. 72.

52