140 [Vol. 18,

30. On some Property of Regular Functions in |z| < 1.

By Tatsujiro SHIMIZU.

Mathematical Institute, Osaka Imperial University.

(Comm. by T. Yosie, M.I.A., March 12, 1942.)

§ 1. We shall introduce some of the directional maximum modulus of a regular function in the circle |z| < 1, and give some theorem on it.

Let f(z) be a regular function in |z| < 1 and $M_{\theta}(r, \varepsilon) = 1$. u. b. |f(z)|, ε being a positive number, and

$$\overline{\lim_{r\to 1}}\,\frac{M_{\theta}(r,\,\varepsilon)}{\varphi(r)}=\overline{M}_{\theta}(1,\,\varepsilon)_{\varphi}$$

$$\lim_{r\to 1}\frac{M_{\theta}(r,\,\varepsilon)}{\varphi(r)}=\underline{M}_{\theta}(1,\,\varepsilon)_{\varphi}$$

where $\varphi(r)$ is a monotonously increasing function for $r \to 1$.

Now

g. l. b.
$$\overline{M}_{\theta}(1, \varepsilon)_{\varphi} = \overline{M}_{\theta}(1)_{\varphi}^{1}$$

l. u. b.
$$\underline{M}_{\theta}(1, \epsilon)_{\varphi} = \underline{M}_{\theta}(1)_{\varphi}$$
.

These measures are of some use for a regular function in |z| < 1. In the following we shall consider the case $\varphi(r) \equiv 1$ and denote by $\overline{M}_{\theta}(1)$ and $M_{\theta}(1)$ respectively.

§ 2. Let E_{θ} be a set of θ , which is everywhere dense in $(0, 2\pi)$ and if f(z) converges (to limits, ∞ included) for all θ , belonging to E_{θ} when $z=re^{i\theta} \rightarrow 1$, θ being fixed, then we shall call f(z) has F-property.

Let E_{θ} be a set of θ , which is everywhere dense in $(0, 2\pi)$ and if $\overline{M}_{\theta}(1) = \infty$ for all θ , belonging to E_{θ} , then we shall call f(z) has M-property.

Theorem: Let f(z) be regular in |z| < 1 and have F- and M-properties, then the Riemann surface of the inverse function of f(z) has no parts of boundary in the finite plane?

By to have parts of boundary³⁾, having α , β as the end-points, in the finite plane, we shall mean the following:

¹⁾ l. u. b.=least upper bound.

g. l. b.=greatest lower bound.

²⁾ A sort of modular functions has F- and M-properties. M-property is equivalent to the unboundness of |f(z)| in any sector.

³⁾ The boundary of the domain within the angle $\langle \alpha p \beta \rangle$ may be a line of singularity or a set of limit points of branch points. We suppose here α and β both lie in the finite plane.

Let α and β be two accessible singular points when we prolong some element of the function on the Riemann surface along two straight lines respectively from a point p, then we can not prolong the element of the function on the Riemann surface, in the angle $\langle ap\beta \rangle$, in any manner outside a certain domain lying in the limited part of the plane¹⁾.

§ 3. Proof of the theorem: If there were a part of boundary, α and β being the end-points, consider the images $\overline{p'\alpha'}$ and $\overline{p'\beta'}$ of $\overline{p\alpha}$ and $\overline{p\beta}$ by $z=f^{-1}(w)$ respectively.

The curves $\overline{p'a'}$ and $\overline{p'\beta'}$ converges to two points a' and β' (a' and β' may coincicle) on |z|=1 respectively.

For, p'a', for instance, can neither oscillate infinitely often within $|z| \leq \delta < 1$, nor approach oscillating infinitely often to some arc on |z|=1 by the *F*-property. If it were so, let $\overline{0a}$ and $\overline{0b}$ be two radius vectors intersecting infinitely often the curve $\overline{p'a'}$, and on which f(z) tends to ξ and η respectively.

Since $f(z) \to a$ along $\overline{p'a'}$, ξ and η are both equal to a. Thus |f(z)| is limited in some vicinity of the arc \widehat{ab} on |z|=1 and f(z) must be a constant by Koebe's theorem².

Now the first case; α' and β' are different.

However we may prolong some element in a domain bounded by $\overline{p'\alpha'}$, $\overline{p'\beta'}$ and $\overline{\alpha'\beta'}$ we can not prolong the element outside the domain on the Riemann surface bounded by $\overline{p\alpha}$, $\overline{p\beta}$ and $\widehat{\alpha\beta}$. Thus in the angle $<\alpha'0\beta'$ we have $\overline{M}_{\theta}(1)< K$ in a sufficiently small vicinity of the arc $\widehat{\alpha''\beta''}$ lying on $\widehat{\alpha'\beta'}$.

Next the second case; α' and β' coincide.

In this case we can prolong some element up to ∞ in any direction θ , except the set of θ of zero measure.

This comes from the method given by Gross.

We normalise the Riemann surface in the following way.

By $w_1 = \frac{1}{w-p}$ the part of the star-region in the angle $< \alpha p \beta$ is transformed into a domain \overline{G} on the w_1 -plane such as ∞ into 0 and p into ∞ .

By $w_1 = \frac{1}{f(z) - p} = g(z)$, \overline{G} is mapped on a simply connected domain G of the z-plane, G lying in a domain bounded by $\overline{p'a'}$ and $\overline{p'\beta'}$.

Let G(r) be the part of G for which $|z-\alpha'| < r$ and |z| < 1, and

 $G(r, \epsilon)$ the part of G for which $\epsilon < |z-a'| < r$. In \overline{G} there corresponds $\overline{G}(r)$ to G(r), whose areal measure $J(\overline{G}(r))$

In \overline{G} there corresponds $\overline{G}(r)$ to G(r), whose areal measure $J(\overline{G}(r))$ is given by

$$\lim_{\varepsilon \to 0} \int_{G(r, \varepsilon)} |g'(z)|^2 dz d\bar{z} = \lim_{\varepsilon \to 0} \int_{G(r, \varepsilon)} |g'(z)|^2 r dr d\varphi \tag{1}$$

¹⁾ For the functions having only F-property the theorem is not true, and it seems to me so for the functions having only M-property.

²⁾ Tsuji: Hukuso Hensû Kansuron. Page 170.

where $z - \alpha' = re^{i\varphi}$.

 $\int_{G(r,\ \epsilon)} |g'(z)|^2 \, r dr d\varphi \ \ \text{being bounded and monotonously increasing for}$ $\epsilon \to 0$ the integral (1) exists.

 $\int_{G(r)} |g'(z)|^2 r dr d\varphi$, for r such as $r \to 0$, corresponds to the remainder of an integral which exists, hence

$$\int_{G(r)} |g'(z)|^2 r dr d\varphi \to 0 \quad \text{for} \quad r \to 0.$$

To the set $\gamma(\rho)$ of G, which belongs to $|z-\alpha'|=\rho$ there corresponds a set $\bar{\gamma}(\rho)$ of \bar{G} whose linear measure is given, when it is finite, by the integral $\int_{-C} |g'(z)| \rho d\varphi$.

Now

$$\left(\int_{G(r)} |g'(z)| \rho d\rho d\varphi\right)^{2} \leq \int_{G(r)} |g'(z)|^{2} \rho d\rho d\varphi \cdot \int_{G(r)} \rho d\rho d\varphi$$

$$\leq J(\overline{G}(r))\pi r^{2}.$$
(2)

If

$$\lim_{\overline{\rho} \to 0} \int_{\gamma(\rho)} g'(z) \, | \, \rho d\rho = g > 0 \,, \quad \text{so we would}$$

have

$$\int_{G(r)} g'(z) \, | \,
ho d
ho darphi \geq gr$$
 .

This contradicts (2), for, $J(\overline{G}(r)) \rightarrow 0$ for $r \rightarrow 0$.

Now let us return to the star-region over the w-plane. Let $\gamma(\varphi, R)$ be the part of the set which corresponds to $\bar{\gamma}(\rho)$, for which $|w-p| \leq R$.

Evidently for fixed R

$$\lim_{\rho \to 0} J(\gamma(\rho, R)) = 0$$
, J being the linear measure of $\gamma(\rho, R)$.

Every radial ray of the star-region, which ends at a point \widetilde{w} , $|\widetilde{w}-p| \leq R$, (which is a branch-point), must meet $\gamma(\rho, R)$ for every ρ .

A sufficiently small vicinity of p, belonging to the star-region, if we measure the set of the radial rays by the measure of a point-set, at which the unit circle about p is intersected by the set of radial rays, so the measure of the above mentioned set of radial rays is given by

$$M(R) \le mJ(\gamma(\rho, R)) \tag{3}$$

when ρ is so small that $\gamma(\rho, R)$ does not appear in some vicinity of p.

Here m is a constant depending only on the area of this vicinity of p.

This is evident, for, $\gamma(\rho, R)$ is a sequence of analytic curves so far as r > 0, and the least value is given when they meet perpendiculary to the radial rays of the star-region.

From (3) we have M(R)=0. Thus the theorem is proved.