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30. On some Property of Regular Functions
in |2|<L1.

By Tatsujiro SHIMIZU.
Mathematical Institute, Osaka Imperial University.
(Comm. by T. YOSIE, M.I.A., March 12, 1942.)

§1. We shall introduce some of the directional maximum modulus
of a regular function in the circle |2|<<1, and give some theorem
on it.

Let f() be a regular function in |z|<<1 and Myr, ¢)=

.u b | f(2)|, ¢ being a positive number, and
|2]=7r, —e< Argz<f+e
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where ¢(r) is a monotonously increasing function for »—1.

Now g0.<le.<?. M,Q1, &),=My1),?

L . b, My, e)y=(0),

0<e<

These measures are of some use for a regular function in |2| <<1.
In the following we shall consider the case ¢(r)=1 and denote by
M,(1) and M,(1) respectively.

§2. Let E; be a set of §, which is everywhere dense in (0, 27)
and if f(2) converges (to limits, o included) for all 6, belonging to E,
when z=7r¢—1, 0 being fixed, then we shall call f(z) has F-property.

Let Ejy be a set of 4, which is everywhere dense in (0, 27) and if
My(1)=oo for all 6, belonging to E,, then we shall call f(z) has M-
property.

Theorem : Let f(z) be regular in |2|<<1 and have F- and M-pro-
perties, then the Riemann surface of the inverse function of f(z) has
no parts of boundary in the finite plane®.

By to have parts of boundary®, having «, 8 as the end-points, in
the finite plane, we shall mean the following :

1) L u. b.=least upper bound.
g. L. b.=greatest lower bound.
2) A sort of modular functions has /- and M-properties. M-property is equivalent
to the unboundness of |f(2)| in any sector.
3) The boundary of the domain within the angle <apB may be a line of singu-
larity or a set of limit points of branch points. We suppose here ¢ and g8 both lie in
the finite plane,
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Let @ and B be two accessible singular points when we prolong
some element of the function on the Riemann surface along two
straight lines respectively from a point p, then we can not pro-
long the element of the function on the Riemann surface, in the angle
<<apB, in any manner outside a certain domain lying in the limited
part of the planeV.

§3. Proof of the theorem: If there were a _part of boundary,
a and d B being the end-points, consider the images p’«’ and p'g’ of pa
and pB by z=1" 1(w) respectively.

The curves p’a’ and p’R’ converges to two points ' and §' (« and
B may coincicle) on |z|=1 respectively.

For, p'd/, for instance, can neither oscillate infinitely often within
|z] < 0<<1, nor approach oscillating infinitely often to some arc on
|z|=1 by the F-property. If it were so, let Oa and 0b be two radius
vectors intersecting infinitely often the curve p’</, and on which f(2)
tends to £ and 7 respectively

Since f(2) =« along p'a, € and 7 are both equal to . Thus |f(2)|

is limited in some vicinity of the arc ab on |z|=1 and f(z) must be a
constant by Koebe’s theoremz’.

Now the first case; « and g are different.

However we may prolong some element in a domain bounded by
p'd, P and «f we can not prolong the element outside the domain

on the Riemann surface bounded by pa, pf and aB. Thus in the angle
f\a’O,B’ we have My(1) <K in a sufficiently small vicinity of the arc
4’8" lying on o/z’E’ .

Next the second case; o and B coincide.

In this case we can prolong some element up to < in any direc-
tion 6, except the set of 6 of zero measure.

This comes from the method given by Gross.

We normalise the Riemann surface in the following way.

By w;= wl ’ the part of the star-region in the angle <<apf is

transformed into a domain G on the w;-plane such as o into 0 and p
into co.

By wl=#= 9(z), G is mapped on a simply connected domain

f@)—-»

G of the z-plane, G lying in a domain bounded by p’«’ and P'F.
Let G(r) be the part of G for which |z—« | <<r and |z|<<1, and
G(r, ¢) the part of G for which e<<|z—d' | <7

In G there corresponds G(r) to G(r), whose areal measure J (@(r))
is given by

Lims | () [Pdzdz=Lim j | g/@) Erdrde (1)
>0 JG(r, © >0 Gfr, &)

1) For the functions having only F-property the theorem is not true, and it
seems to me so for the functions having only IM-property.
2) Tsuji: Hukuso Hensi Kansuron. Page 170,
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where z—d =ré",

LL{{G Sz) [Prdrde being bounded and monotonously increasing for
e—0 the integral (1) exists.

LKI g’(z) [2rdrde, for r such as r»— 0, corresponds to the remainder
of an integral which exists, hence

Ll( g’(z) Erdrde —0 for r—0.

To the set r(0) of G, which belongs to | 2—a’ | =p there corresponds
a set 7(0) of G whose linear measure is given, when it is finite, by

the integral S |9/ (2) | pdep.
7(0)

2
Now (qu @] pdpdso) = | 9@ Fededy - nglpdso
< J(G))nr®. @)
If lim J |9'(®) | pdp=9g>0, so we would
>0 J (o)
! >
have Ll g ()| pdpde = gr .

This contradicts (2), for, J (G(r)) —0 for r—0.

Now let us return to the star-region over the w-plane. Let
7(¢, R) be the part of the set which corresponds to 7(p), for which
|lw—p| < R.

Evidently for fixed R

limJ (r(p, R))=0, J being the linear measure of 7(p, R).
0>0

Every radial ray of the star-region, which ends at a point
w, |w—p|< R, (which is a branch-point), must meet r(e, R) for
every p.

A sufficiently small vicinity of p, belonging to the star-region, if
we measure the set of the radial rays by the measure of a point-set,
at which the unit circle about p is intersected by the set of radial
rays, so the measure of the above mentioned set of radial rays is
given by

M(R) < mJ (r(o, R)) 3)

when p is so small that 7(p, B) does not appear in some vicinity
of p.

Here m is a constant depending only on the area of this vicinity
of p.
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This is evident, for, r(p, B) is a sequence of analytic curves so far
as >0, and the least value is given when they meet perpendiculary
to the radial rays of the star-region.

From (8) we have M(R)=0.

Thus the theorem is proved.



