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The object of this paper is to generalize the key theorem due to
PettisD, from which almost all theorems concerning differentiation of
the Banach space-valued functions of bounded variation are derived.

1. We will begin by some known definitions.
Let be a Banach space2.

[1.1] If (r) is a sequence in (conjugate space of ) and } is a
subset of , then (r) is called to have property N() provided that
r 1 (n= 1, 2,...) and y I[=lim sup r(y) for every y e 9. In

this case we write symbolically (r)eN(}).
[1.2] If X is an interval function on a Euclidean cube R0 to ,
then (==(R, 1, ..., R, k)) is called a XR-maximal sequence provided

that is a partition of Ro and XR,,. tends to the total variation
of X on R0as n
[1.3]x If =(R. , ..., R..) (n 1, 2, ...) is a sequence of partitions

of R0, then the linear closure of the set (XR,.;i=l, 2,...,k,;n=l,
2, ...) is called the X-span of (=).
[1.4]s If 0 is a point function on R0 to , then is called to be
restricted provided that 1 x is bounded, 2 there exists a positive
number M such that for any >0 there corresponds a sequence of

disjoint measurable sets (e, e2,...) with ]e[ <: , ] ]e, 1= Ro] and

II (x,-)II <R for any subset (i) and and in e.
[1.5] x is called to be measurable if there exists a sequence of re-
stricted functions which tends to . Symbolically we write ,e M.
[1.6] If , is integrable in the Birkhoff sense, then we write ,e L.

Concerning differentiation, we define

[1.7] If is a subset of , then X is said to be -pseudo-differenti-
able to almost everywhere provided that ’(Xg) is differentiable (in
the ordinary sense) to ’(x,) almost everywhere for all " in .
[1.8] X is (strongly) differentiable to x almost everywhere if for
almost all s in Ro Xg/I I] tends to when I is a cube containing s
and II tends to zero.

1) Pettis, Duke Math. Journ., 5 (1938).
2) denotes definition and theorem.
3) Jeffery, Duke Math. Journ.. 9 (1941).
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If x., is a strong derivative, then x8 is essentially separably valued.
We define derivatives which need not be separably valued and is near
to the strong derivative.

2.
(2.1) Let ) be the linear closure of the set (xs; s eRo). If there ex-
ists a sequence (7)e N(}) such that 7(x8) is measurable (in the ordinary
sense) for all , then e M.

Proof. We can suppose that is bounded. Otherwise we put

)= s, ](x)n and x=0 in E=’ and =x otherwise.

Since x lira sup (x)[[ n, and tends to zero monotonously

as n , x tends to x, almost everywhere by the property N().
If x, is bounded, it is sufficient to prove that x is restricted. Let

(e, e, ...) be any sequence of disjoint measurable sets such that e e

and e= R0 [, and , y be points in e. (r,) e N(O) implies
i=1

(xi--x,i) lim2up r(
Now

is bounded, for 7(x)=---fi,.(s) is a measurable (in the ordinary sense)
function of s and is uniformly bounded. Thus lim sup 7(x)=lim sup
f(s) is also. This proves that x is restricted.
(2.2) Let =(7)eN(?) for in (2.1). If x is almost everywhere
the -pseudo-derivative of X(R), then x is measurable. Furthermore
if XR is of bounded variation, xe L.

Proof. () is a derivative (in the ordinary sense), and then it
is measurable. This implies x is measurable by (2.1). As Pettis has

proved, .I-I[ x ds exists, which implies x e L.
(2.3) If XR is additive and of bounded variation and XR is (7)-
pseudo-differentiable to x with (7)eN(), then xeL. Further let

ZR=XR-- xsd8 and be the ZR-span of a ZR-maximal sequence
JR

(.). If we suppose that XR is (6)-pseudo-differentiable to x for some
()eN(), then that XR is differentiable to x, almost everywhere is

equivalent to I- x. ds is differentiable to x almost everywhere.
JR

Proof is done by (2.2) and the theorem (2.3) in the Pettis paper.
As a particular case we get
(2.4) If XR is additive and of bounded variation, and there exists
(’) e N() such that XR is ()-pseudo-differentiable to x, then x e L
and that XR is differentiable to x almost everywhere is equivalent to

x, ds is differentiable almostto s everywhere.
R

(2.5) If XR is additive and of bounded variation, and Xn is -pseudo-
differentiabl to x, then the conclusion of (2.4) holds.
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3o We will now turn to the differentiation of point functions on
the interval (0, 1) to Banach space .
[3.1] If the integral 1 --z--dt exists, we put

0 (s-)

D1/2x= 1 I z-zt dt2v/ o (s-t)g

integral being in the Birkhof sense.
This is the definition of the fractional differentiation due to Rie.

mann-Liouville in the real case.
[8.2] If D1/2(D1/2) exists, then we call it the (.)-derivative of and
we say that z is (.)-differentiable.

This derivative need not be essentially separably valued.
(8.8) If is (,)-differentiable almost everywhere, then is pseudo-
differentiable almost everywhere to the same value.

is the indefinite integral, that is cs=.Iytdt stlch that(3.5) If

S--$

exists.
If the (,)-derivative of singular function is equal to zero almost

everywhere, then x, is almost everywhere differentiable to y in the

set f[iytl[ dt exists. This assumption is not true in general, but if
8--t

we modify the kernel a little this holds. In the next section we will
give a more general and better definition.

4. We will now replace (0, 1) by (-c, oo) for convenience.
[4.1] x, is called to be (@)-differentiable at t if the limit

lim t-s)x.ds

exists, where the kernel satisfies the following conditions:
1. For any real integrable (in the Lebesgue sense) function g(t) and

its integral G(t) g(s)ds, (x-s)G(s) ds tends to g(t) almost every-

where.

2. For any real singular function h(t) lim (t-s)h(s)ds=O almost

everywhere.
Such kernel exists clearly. This derivative is not also separably

valued in general.
From (2.3) we can prove that

(4.2) If y is of bounded variation and is (7)-pseudo-differentiable to
almost everywhere with (’)eN(), then xe L. Further if we ptt

z,=y,- tdt and ZR=Z--Z for R=(a, b) and then the Z-span

of a ZR-maximal sequence () and if we suppose that y is ()-pseudo-
differentiable to z .for some (3)e N(}), then y. is ()-differentiable to
x almost everywhere,
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(4.3) If y is of bounded variation and there exists (r)eN()such
that y is (r)-pseudo-differentiable to almost everywhere, then xe L
and y is ()-differentiable to almost everywhere.

As an application we define
[4.4] If (} is a (denumerable or not) set in , then {} is called
the base if

1. There exists a {} such that {x} and {} are the biortho-
gonal system.
2. For any 0e there are () {} and () {x} such that._ i(x)x uniquely.

Set of almost periodic functions has such a base.
(4.5) Suppose that has the base such that
1. x I[=lim sup ’(x) where lim sup is taken for - such as r 1,

belongs to the linear closure of (; i=1, 2, ...).
d2. When x= . ()(x)x(), there exists -s ()(x)=()(x) almost

everywhere and c=5-,()(x,)x(,) almost everywhere. Then if y is

of bounded variation, then there exists ()-derivative of y almost every-

where and is equal to ._ (,)(x)x().. We will conclude the paper by the theorem"
(5.1) If XR is the ()-integral (in the Pettis sense) of x, and XR is
of bounded variation, then x, is integrable in the Birkhoff sense and
XR is the Birkhoff integral of x.


