PAPERS COMMUNICATED

27. Notes on Banach Space (1): Differentiation of Abstract Functions.

By Shin-ichi IZUMI.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., March 12, 1942.)

The object of this paper is to generalize the key theorem due to Pettis¹⁾, from which almost all theorems concerning differentiation of the Banach space-valued functions of bounded variation are derived.

1. We will begin by some known definitions.

Let \mathfrak{X} be a Banach space²⁾.

[1.1]¹⁾ If (r_n) is a sequence in \mathfrak{X} (conjugate space of \mathfrak{X}) and \mathfrak{Y} is a subset of \mathfrak{X} , then (r_n) is called to have property $N(\mathfrak{Y})$ provided that $\|r_n\| \leq 1$ (n=1,2,...) and $\|y\| = \limsup_{n} \sup_{n} |r_n(y)|$ for every $y \in \mathfrak{Y}$. In this case we write symbolically $(r_n) \in N(\mathfrak{Y})$. [1.2]¹⁾ If X_R is an interval function on a Euclidean cube R_0 to \mathfrak{X} , then $(\pi_n \equiv (R_n, 1, ..., R_n, k_n))$ is called a X_R -maximal sequence provided that π_n is a partition of R_0 and $\sum_{i=1}^{k_n} \|X_{R_{n,i}}\|$ tends to the total variation

of X_R on R_0 as $n \to \infty$. [1.3]¹⁰ If $\pi_n = (R_{n,1}, \dots, R_{n,k_n})$ $(n=1, 2, \dots)$ is a sequence of partitions

of R_0 , then the linear closure of the set $(X_{R_{n,i}}; i=1, 2, ..., k_n; n=1, 2, ...)$ is called the X_R -span of (π_n) .

[1.4]³⁾ If x_s is a point function on R_0 to \mathfrak{X} , then x_s is called to be restricted provided that 1° x_s is bounded, 2° there exists a positive number M such that for any $\epsilon > 0$ there corresponds a sequence of disjoint measurable sets (e_1, e_2, \ldots) with $|e_i| < \epsilon$, $\sum_{i=1}^{\infty} |e_i| = |R_0|$ and $||\sum_{i=1}^{\infty} (x_{\epsilon_{i_k}} - x_{\eta_{i_k}})|| < R$ for any subset (i_k) and ϵ_{i_k} and η_{i_k} in e_{i_k} . [1.5]³⁾ x_s is called to be measurable if there exists a sequence of re-

stricted functions which tends to x_s . Symbolically we write $x_s \in M$. [1.6] If x_s is integrable in the Birkhoff sense, then we write $x_s \in L$.

Concerning differentiation, we define

[1.7]¹⁾ If 3 is a subset of \overline{x} , then X_R is said to be 3-pseudo-differentiable to x_s almost everywhere provided that $\zeta(X_R)$ is differentiable (in the ordinary sense) to $\zeta(x_s)$ almost everywhere for all ζ in 3.

[1.8] X_R is (strongly) differentiable to x_s almost everywhere if for almost all s in $R_0 X_R / |I|$ tends to x_s when I is a cube containing s and |I| tends to zero.

- 2) [] denotes definition and () theorem.
- 3) Jeffery, Duke Math. Journ.. 9 (1941).

¹⁾ Pettis, Duke Math. Journ., 5 (1938).

If x_s is a strong derivative, then x_s is essentially separably valued. We define derivatives which need not be separably valued and is near to the strong derivative.

(2.1) Let \mathfrak{Y} be the linear closure of the set $(x_s; s \in R_0)$. If there exists a sequence $(\gamma_m) \in \mathcal{N}(\mathfrak{Y})$ such that $\gamma_m(x_s)$ is measurable (in the ordinary sense) for all m, then $x_s \in M$.

Proof. We can suppose that x_s is bounded. Otherwise we put $E_m^n = (s; |\gamma_m(x_s)| > n)$ and $x_s^n = 0$ in $E^n = \sum_{m=1}^{\infty} E_m^n$ and $= x_s$ otherwise. Since $||x_s^n|| \leq \limsup_m |\gamma_m(x_s^n)|| \leq n$, and E_m^n tends to zero monotonously as $n \to \infty$, x_s^n tends to x_s almost everywhere by the property $N(\mathfrak{Y})$.

If x_s is bounded, it is sufficient to prove that x_s is restricted. Let $(e_1, e_2, ...)$ be any sequence of disjoint measurable sets such that $|e_i| < \varepsilon$ and $\sum_{i=1}^{\infty} |e_i| = |R_0|$, and ξ_i , η_i be points in e_i . $(\gamma_m) \in N(\mathfrak{Y})$ implies

$$\|\sum_{k} (x_{\varepsilon_{i_k}} - x_{\eta_{i_k}})\| \leq \limsup_{m} |\gamma_m (\sum_{k} (x_{\varepsilon_{i_k}} - x_{\eta_{i_k}}))|.$$

Now

$$\gamma_m\left(\sum_k \left(x_{\zeta_{i_k}} - x_{\eta_{i_k}}\right)\right) = \sum_k \left(\gamma_m(x_{\xi_{i_k}}) - \gamma_m(x_{\eta_{i_k}})\right)$$

is bounded, for $\gamma_m(x_s) \equiv f_m(s)$ is a measurable (in the ordinary sense) function of s and is uniformly bounded. Thus $\limsup \gamma_m(x_s) = \limsup f_m(s)$ is also. This proves that x_s is restricted.

(2.2) Let $\mathfrak{Z} = (\gamma_j) \in \mathcal{N}(\mathfrak{Y})$ for \mathfrak{Y} in (2.1). If x_s is almost everywhere the \mathfrak{Z} -pseudo-derivative of X(R), then x_s is measurable. Furthermore if X_R is of bounded variation, $x_s \in L$.

Proof. $\gamma_j(x_s)$ is a derivative (in the ordinary sense), and then it is measurable. This implies x_s is measurable by (2.1). As Pettis has proved, $\int ||x_s|| ds$ exists, which implies $x_s \in L$.

(2.3) If X_R is additive and of bounded variation and X_R is (γ_j) -pseudo-differentiable to x_s with $(\gamma_j) \in N(\mathfrak{Y})$, then $x_s \in L$. Further let $Z_R = X_R - \int_R x_s \, ds$ and \mathfrak{W} be the Z_R -span of a Z_R -maximal sequence (π_n) . If we suppose that X_R is (δ_j) -pseudo-differentiable to x_s for some $(\delta_j) \in N(\mathfrak{W})$, then that X_R is differentiable to x_s almost everywhere is equivalent to $\int_R x_s \, ds$ is differentiable to x_s almost everywhere.

Proof is done by (2.2) and the theorem (2.3) in the Pettis paper. As a particular case we get

(2.4) If X_R is additive and of bounded variation, and there exists $(\gamma_j) \in N(\mathfrak{X})$ such that X_R is (γ_j) -pseudo-differentiable to x_s , then $x_s \in L$ and that X_R is differentiable to x_s almost everywhere is equivalent to

 $\int_{P} x_s ds$ is differentiable to x_s almost everywhere.

(2.5) If X_R is additive and of bounded variation, and X_R is $\overline{\mathfrak{X}}$ -pseudodifferentiable to x_s , then the conclusion of (2.4) holds.

2.

3. We will now turn to the differentiation of point functions on the interval (0, 1) to Banach space \mathfrak{X} .

[3.1] If the integral
$$\int_{0}^{s} \frac{x_s - x_t}{(s-t)^{\frac{3}{2}}} dt$$
 exists, we put

$$D^{\frac{1}{2}}x_{s} = \frac{1}{2\sqrt{\pi}} \int_{0}^{s} \frac{x_{s} - x_{t}}{(s-t)^{\frac{s}{2}}} dt$$

integral being in the Birkhoff sense.

This is the definition of the fractional differentiation due to Riemann-Liouville in the real case.

[3.2] If $D^{\frac{1}{2}}(D^{\frac{1}{2}}x_s)$ exists, then we call it the (*)-derivative of x_s and we say that x_s is (*)-differentiable.

This derivative need not be essentially separably valued.

(3.3) If x_s is (*)-differentiable almost everywhere, then x_s is pseudo-differentiable almost everywhere to the same value.

(3.5) If x_s is the indefinite integral, that is $x_s = \int_0^s y_t dt$ such that $\int_0^1 \|y_t\| dt$ exists, then x_s is (*)-differentiable at s such that $\int_0^s \|y_t\| \frac{dt}{s-t}$ exists.

If the (*)-derivative of singular function is equal to zero almost everywhere, then x_s is almost everywhere differentiable to y_s in the set $\int_0^s ||y_t|| \frac{dt}{s-t}$ exists. This assumption is not true in general, but if we modify the kernel a little this holds. In the next section we will give a more general and better definition.

4. We will now replace (0, 1) by $(-\infty, \infty)$ for convenience. [4.1] x_s is called to be (*)-differentiable at t if the limit

$$\lim_{n\to\infty}\int_{-\infty}^{\infty}K_n(t-s)\,x_s\,ds\,,$$

exists, where the kernel satisfies the following conditions:

1°. For any real integrable (in the Lebesgue sense) function g(t) and its integral $G(t) = \int_0^t g(s) ds$, $\int_{-\infty}^{\infty} K_n(x-s)G(s) ds$ tends to g(t) almost everywhere.

2°. For any real singular function $h(t) \lim_{n \to \infty} \int_{-\infty}^{\infty} K_n(t-s)h(s) ds = 0$ almost everywhere.

Such kernel exists clearly. This derivative is not also separably valued in general.

From (2.3) we can prove that (4.2) If y_s is of bounded variation and is (γ_j) -pseudo-differentiable to x_s almost everywhere with $(\gamma_j) \in N(\mathfrak{Y})$, then $x_s \in L$. Further if we put $z_s = y_s - \int^s x_t dt$ and $Z_R = z_b - z_a$ for R = (a, b) and then \mathfrak{W} the Z_R -span of a Z_R -maximal sequence (π_n) and if we suppose that y_s is (δ_j) -pseudodifferentiable to x_s for some $(\delta_j) \in N(\mathfrak{Y})$, then y_s is (\sharp) -differentiable to x_s almost everywhere, (4.3) If y_s is of bounded variation and there exists $(\gamma_j) \in N(\mathfrak{X})$ such that y_s is (γ_j) -pseudo-differentiable to x_s almost everywhere, then $x_s \in L$ and y_s is (\sharp) -differentiable to x_s almost everywhere.

As an application we define

[4.4] If $\{x_a\}$ is a (denumerable or not) set in \mathfrak{X} , then $\{x_a\}$ is called the base if

1°. There exists a $\{\zeta_a\} \subset \overline{\mathfrak{X}}$ such that $\{x_a\}$ and $\{\zeta_a\}$ are the biorthogonal system.

2°. For any $x \in \mathfrak{X}$ there are $(\zeta_{a_i}) \subset \{\zeta_a\}$ and $(x_{a_i}) \subset \{x_a\}$ such that $x = \sum_{i=1}^{\infty} \zeta_{a_i}(x) x_{a_i}$ uniquely.

Set of almost periodic functions has such a base.

(4.5) Suppose that \mathfrak{X} has the base such that

1°. $||x|| = \limsup |\gamma(x)|$ where $\limsup \sup is$ taken for γ such as $||\gamma|| \leq 1$, γ belongs to the linear closure of $(\zeta_{a_i}; i=1, 2, ...)$.

2°. When $x_s = \sum_{i=1}^{\infty} \zeta_{a(s)_i}(x_s) x_{a(s)_i}$, there exists $\frac{d}{ds} \zeta_{a(s)}(x) = \zeta_{\beta(s)}(x)$ almost everywhere and $\dot{x}_s = \sum \zeta_{\beta(s)_i}(x_s) x_{\beta(s)_i}$ almost everywhere. Then if y_s is of bounded variation, then there exists (\sharp)-derivative of y_s almost everywhere and is equal to $\sum_{i=1}^{\infty} \zeta_{\beta(s)_i}(x_s) x_{\beta(s)_i}$.

5. We will conclude the paper by the theorem :

(5.1) If X_R is the (\mathfrak{X}) -integral (in the Pettis sense) of x_s and X_R is of bounded variation, then x_s is integrable in the Birkhoff sense and X_R is the Birkhoff integral of x_s .