36. On a Theorem of F. and M. Riesz.
By Masatsugu Tsuji.
Mathematical Institute, Tokyo Imperial University. (Comm. by S. Kakeya, m.I.A., April 13, 1942.)

1. Let D be a domain on the w-plane, bounded by a rectifiable curve Γ and we map D conformally on $|z|<1$, then F. and M. Riesz ${ }^{1)}$ proved that a null set on $|z|=1$ corresponds to a null set on Γ and a null set on Γ corresponds to a null set on $|z|=1$, where a set is called a null set, if its measure is zero. We will prove an analogous theorem, when D is a domain on a minimal surface, bounded by a rectifiable curve.

Let Γ be a rectifiable curve in an m-dimensional space, then it is proved by Radó, Douglas and Courant that there exists a minimal surface S through Γ.

Let S be defined by a vector $\mathfrak{x}=\mathfrak{x}(z)=\left(x_{1}(z), \ldots, x_{m}(z)\right)(z=u+$ $\left.i v=r e^{i \theta}\right)$, where the components $x_{k}(z)(k=1, \ldots, m)$ are continuous in $|z| \leqq 1$ and harmonic in $|z|<1$ and $\mathfrak{x}=\mathfrak{x}\left(e^{i \theta}\right)$ maps $|z|=1$ continuously and monotonically on Γ and if we put

$$
E=\sum_{k=1}^{m}\left(\frac{\partial x_{k}}{\partial u}\right)^{2}, \quad F=\sum_{k=1}^{m} \frac{\partial x_{k}}{\partial u} \cdot \frac{\partial x_{k}}{\partial v}, \quad G=\sum_{k=1}^{m}\left(\frac{\partial x_{k}}{\partial v}\right)^{2},
$$

then

$$
\begin{equation*}
E=G, \quad F=0 \quad \text { in }|z|<1 \tag{1}
\end{equation*}
$$

Let $d s$ be the line element on S, then

$$
\begin{equation*}
d s^{2}=\sum_{k=1}^{m} d x_{k}^{2}=E\left(d u^{2}+d v^{2}\right)=E\left(d r^{2}+r^{2} d \theta^{2}\right) \tag{2}
\end{equation*}
$$

so that

$$
E=E(z)=\frac{1}{r^{2},} \sum_{k=1}^{m}\left(\frac{\partial x_{k}}{\partial \theta}\right)^{2} .
$$

Put $\quad x_{k}=\Re\left(f_{k}(z)\right)$, where $f_{k}(z)$ are regular in $|z|<1$, then

$$
\begin{align*}
E & =\frac{1}{2}(E+G)=\frac{1}{2} \sum_{k=1}^{m}\left(\left(\frac{\partial x_{k}}{\partial u}\right)^{2}+\left(\frac{\partial x_{k}}{\partial v}\right)^{2}\right) \\
& =\frac{1}{2} \sum_{k=1}^{m}\left(\frac{\partial x_{k}}{\partial u}+i \frac{\partial x_{k}}{\partial v}\right)\left(\frac{\partial x_{k}}{\partial u}-i \frac{\partial x_{k}}{\partial v}\right)=\frac{1}{2} \sum_{k=1}^{m}\left|f_{k}^{\prime}(z)\right|^{2} . \tag{3}
\end{align*}
$$

We will prove the following theorem.
Theorem I. Let S be a minimal surface in an m-dimensional space, bounded by a rectifiable curve I^{\prime} and $\mathfrak{x}=\mathfrak{x}(z) \operatorname{map} S$ on $|z| \leqq 1$, then a null set on $|z|=1$ corresponds to a null set on Γ and a null set on Γ corresponds to a null set on $|z|=1$.

1) F. and M. Riesz: Über die Randwerte einer analytischen Funktion. Quatrième congres des mathématiciens scandinaves à Stockholm, 1916.
2. Proof of Theorem I. Let L be the length of Γ and $|z|=r<1$ corresponds to Γ_{r} on S and $L(r)$ be its length, then Radó ${ }^{1}$ proved that $L(r)$ is an increasing function of r and

$$
\begin{equation*}
L(r) \leqq L, \quad \lim _{r \rightarrow 1} L(r)=L \tag{4}
\end{equation*}
$$

Since $L(r)=\int_{0}^{2 \pi} r \sqrt{E\left(r e^{i \theta}\right)} d \theta$, we have from (3) and (4),

$$
\int_{0}^{2 \pi} r\left|f_{k}^{\prime}\left(r e^{i \theta}\right)\right| d \theta \leqq \sqrt{2} \int_{0}^{2 \pi} r \sqrt{E\left(r e^{i \theta}\right)} d \theta=\sqrt{2} L(r) \leqq \sqrt{2} L
$$

Hence by F. Riesz' theorem ${ }^{2}$, $f_{k}(z)$ and hence $x_{k}(z)$ are absolutely continuous on $|z|=1$ and $\lim _{z \rightarrow e^{i \theta}} f_{k}^{\prime}(z)=f_{k}^{\prime}\left(e^{i \theta}\right)$ exist almost everywhere on $|z|=1$, when z tends to $e^{i \theta}$ non-tangentially to $|z|=1$ and $f_{k}^{\prime}\left(e^{i \theta}\right) \neq 0$ almost everywhere, if $f_{k c}(z) \neq$ const. Since

$$
\begin{align*}
E\left(e^{i \theta}\right)=\lim _{z \rightarrow e^{i \theta}} E(z) & =\lim _{z \rightarrow e^{i \theta}} \sum_{k=1}^{m}\left(\frac{\partial x_{k}(z)}{\partial \psi}\right)^{2}=\frac{1}{2} \lim _{z \rightarrow e^{i \theta}} \sum_{k=1}^{m}\left|f_{k i}^{\prime}(z)\right|^{2} \\
& =\frac{1}{2} \sum_{k=1}^{m}\left|f_{k}^{\prime}\left(e^{i \theta}\right)\right|^{2}, \quad\left(z=r e^{i \psi}\right), \tag{5}
\end{align*}
$$

$E\left(e^{i \theta}\right) \neq 0$ almost everywhere, if one of $f_{k}(z) \neq$ const., which we assume in the following.

If $\frac{d x_{k}\left(e^{i \theta}\right)}{d \theta}$ exists, which occurs almost everywhere by the absolute continuity of $x_{k}\left(e^{i \theta}\right)$, then by Fatou's theorem ${ }^{3}$,

$$
\lim _{z \rightarrow e^{i \theta}} \frac{\partial x_{k}(z)}{\partial \psi}=\frac{d x_{k}\left(e^{i \theta}\right)}{d \theta} \quad\left(z=r e^{i \psi}\right)
$$

when z tends to $e^{i \theta}$ non-tangentially to $|z|=1$.
Hence by (5) and (6),

$$
\begin{equation*}
E\left(e^{i \theta}\right)=\sum_{k=1}^{m}\left(\frac{d x_{k}\left(e^{i \theta}\right)}{d \theta}\right)^{2} \neq 0 \text { almost everywhere. } \tag{7}
\end{equation*}
$$

Since $x_{k}\left(e^{i \theta}\right)$ are absolutely continuous, $L=\int_{0}^{2 \pi} \sqrt{E\left(e^{i \theta}\right)} d \theta$, so that a null set on $|z|=1$ corresponds to a null set on Γ.

Next we will prove that a null set on Γ corresponds to a null set on $|z|=1$. Let e be a null set on Γ which corresponds to E on $|z|=1$ and e^{\prime} be a null set which contains e and is G_{δ}, which corresponds to E^{\prime} on $|z|=1$. Then E^{\prime} contains E and being the continuous image of G_{δ} is G_{δ} and hence is measurable. Hence if we deduce $m E^{\prime}=0$ from $m e^{\prime}=0$, then

[^0]$m E=0$ follows a fortiori, so that we assume that E is measurable. Since $m e=0$, we can cover e by a sequence of open intervals Δs_{n}, such that $\sum_{n=1}^{\infty}\left|\Delta s_{n}\right|<\varepsilon$, where $\left|\Delta s_{n}\right|$ denotes the arc length of Δs_{n}. Let $\Delta \theta_{n}$ correspond to Δs_{n} on $|z|=1$, then $\left|\Delta s_{n}\right|=\int_{\Delta \theta_{n}} \sqrt{E\left(e^{i \theta}\right)} d \theta$, so that
$$
\varepsilon>\sum_{n=1}^{\infty}\left|\Delta s_{n}\right|=\sum_{n=1}^{\infty} \int_{\Delta \theta_{n}} \sqrt{E\left(e^{i \theta}\right)} d \theta \geqq \int_{E} \sqrt{E\left(e^{i \theta}\right)} d \theta
$$

Since ε is arbitrary, we have $\int_{E} \sqrt{E\left(e^{i \theta}\right)} d \theta=0$ and from (7), it follows that $m E=0$, q. e.d.
3. Let $f_{k}(z)=x_{k}(z)+i y_{k}(z)$, then $f_{k}^{\prime}(z)=\frac{\partial x_{k}}{\partial u}-i \frac{\partial x_{k}}{\partial v}$.

Since from (5) and (6), $\sum_{k=1}^{m}\left|f_{k}^{\prime}\left(e^{i \theta}\right)\right|^{2} \neq 0$ almost everywhere, we assume that $E(1)=\frac{1}{2} \sum_{k=1}^{m}\left|f_{k}^{\prime}(1)\right|^{2} \neq 0$ and put

$$
\lim _{z \rightarrow 1} \frac{\partial x_{k}}{\partial u}=A_{k}, \quad \lim _{z \rightarrow 1} \frac{\partial x_{k}}{\partial v}=B_{k},
$$

when z tends to 1 non-tangentially to $|z|=1$. Then by (1)

$$
\begin{equation*}
\sum_{k=1}^{m} A_{k}^{2}=\sum_{k=1}^{m} B_{k}^{2}=E(1) \neq 0, \sum_{k=1}^{m} A_{k} B_{k}=0 \tag{8}
\end{equation*}
$$

Let $\delta_{z}{ }^{2}, \delta_{z}^{\prime}$ be two vectors on the z-plane whose initial points are $z=1$ and end points are $z=(1-\rho \cos \theta)+i \rho \sin \theta$ and $z^{\prime}=1-\rho$ respectively, then δz makes an angle θ with δz^{\prime}.

Let $\delta \mathrm{c}=\left(\delta x_{1}, \ldots, \delta x_{m}\right), \delta y_{c}^{\prime}=\left(\delta x_{1}^{\prime}, \ldots, \delta x_{m}^{\prime}\right)$ correspond to $\delta z_{3}, \delta \delta_{y}^{\prime}$ on S, then

$$
\begin{align*}
\delta x_{k} & =x_{k}(z)-x_{k}(1)=\frac{\partial x_{k}(\xi)}{\partial u}(-\rho \cos \theta)+\frac{\partial x_{k}(\xi)}{\partial v} \rho \sin \theta \\
& =\left(-A_{k} \cos \theta+B_{k} \sin \theta\right) \rho+o(\rho) \tag{9}
\end{align*}
$$

where ξ is a point on δ.
Similarly

$$
\begin{equation*}
\delta x_{k}^{\prime}=-A_{k} \rho+o(\rho) \tag{10}
\end{equation*}
$$

Hence if we denote the angle between $\delta x, \delta \mathrm{~g}^{\prime}$ by ϕ, then by (8), (9) and (10),

$$
\lim _{\rho \rightarrow 0} \cos \phi=\lim _{\rho \rightarrow 0} \frac{\sum_{k=1}^{m} \delta x_{k} \delta x_{k}^{\prime}}{\sqrt{\sum_{k=1}^{m} \delta x_{k}^{2} \sum_{k=1}^{m} \delta x_{k}^{\prime 2}}}=\cos \theta
$$

or

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \phi=\theta, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} \frac{|d \mathfrak{r}|}{\left|d_{\xi}\right|}=\lim _{\rho \rightarrow 0} \frac{\sqrt{\sum_{k=1}^{m} \delta x_{k}^{2}}}{\rho}=\sqrt{E(1)} \neq 0 . \tag{12}
\end{equation*}
$$

From (11), (12) we have the following theorem.
Theorem II. Under the same condition as Theorem I, the mapping of $|z| \leqq 1$ on S is conformal at almost all points on $|z|=1$.

[^0]: 1) T. Radô : On Plateau's problem. Annals of Math. 31 (1930).
 2) F. Riesz: U̇ber die Randwerte einer analytischen Funktion. Math. Z. 18 (1923).
 3) Fatou: Séries trigométriques et séries de Taylor Acta Math. 30 (1906).
