109. On the Distributivity of a Lattice of Lattice-congruences.

By Nenosuke Funayama and Tadasi Nakayama.
Sendai Military Cadet School and Nagoya Imperial University. (Comm. by T. TakagI, m.I.A., Nov. 12, 1942.)

In a previous note ${ }^{1)}$ one of us studied the structure of the lattice formed of congruences of a finite-dimensional lattice to prove that it is a distributive lattice. In the following we want to show that the congruences of any lattice, not necessarily finite-dimensional, form always a distributive lattice. The proof is quite simple and direct. Namely :

Let L be a lattice and let $\Phi=\{\varphi\}$ be the (complete) lattice of its congruences; we mean by $\varphi_{1} \geqq \varphi_{2}$ that ${ }^{2}$) $a \equiv b$ mod. φ_{1} implies $a \equiv b$ \bmod. φ_{2}. Thus $a \equiv b \bmod . \varphi_{1} \cup \varphi_{2}$ when and only when a and b are congruent both $\bmod . \varphi_{1}$ and $\bmod . \varphi_{2}$, while $a \equiv b \bmod . \varphi_{1} \cap \varphi_{2}$ is equivalent to that there exists a finite system of elements $c_{1}, c_{2}, \ldots, c_{n}$ in L such that

$$
\begin{equation*}
a \equiv c_{1}\left(\varphi_{1}\right), c_{1} \equiv c_{2}\left(\varphi_{2}\right), c_{2} \equiv c_{3}\left(\varphi_{1}\right), \ldots, c_{n-1} \equiv c_{n}\left(\varphi_{1}\right), c_{n} \equiv b\left(\varphi_{2}\right) . \tag{1}
\end{equation*}
$$

Consider arbitrary three congruences φ_{1}, φ_{2} and φ_{3}. Obviously $\left(\varphi_{1} \cap \varphi_{2}\right) \cup \varphi_{3} \leqq\left(\varphi_{1} \cup \varphi_{3}\right) \cap\left(\varphi_{2} \cup \varphi_{3}\right)$. In order to prove the converse inclusion, assume

$$
\begin{equation*}
a \equiv b \bmod .\left(\varphi_{1} \cap \varphi_{2}\right) \cup \varphi_{3} \tag{2}
\end{equation*}
$$

for a certain pair $a>b$ of elements in L. Then $a \equiv b \bmod . \varphi_{3}$ and there is a finite set of elements $c_{1}, c_{2}, \ldots, c_{n}$ such that (1) holds. Now, the transformation

$$
x \rightarrow x^{\prime}=(x \cap a) \cup b
$$

maps L onto the interval $[b, a]$, and it preserves any congruence relation. On applying this tranformation to (1), we see that we may assume without loss of generality that

$$
a \geqq c_{i} \geqq b \quad(i=1,2, \ldots, n)
$$

But then, since $a \equiv b \bmod . \varphi_{3}$, the elements a, b and c_{i} are all congruent mod. φ_{3}. Hence

$$
\begin{gathered}
a \equiv c_{1}\left(\varphi_{1} \cup \varphi_{3}\right), c_{1} \equiv c_{2}\left(\varphi_{2} \cup \varphi_{3}\right), c_{2} \equiv c_{4}\left(\varphi_{1} \cup \varphi_{3}\right), \ldots \\
\quad \ldots, c_{n-1} \equiv c_{n}\left(\varphi_{1} \cup \varphi_{3}\right), c_{n} \equiv b\left(\varphi_{2} \cup \varphi_{3}\right),
\end{gathered}
$$

which means

$$
a \equiv b \bmod .\left(\varphi_{1} \cup \varphi_{3}\right) \cap\left(\varphi_{2} \cup \varphi_{3}\right) .
$$

Since this is the case for every pair $a>b$ in L satisfying (2), we have $\left(\varphi_{1} \cap \varphi_{2}\right) \cup \varphi_{3} \geqq\left(\varphi_{1} \cup \varphi_{3}\right) \cap\left(\varphi_{2} \cup \varphi_{3}\right)$ as desired. Thus

[^0]Theorem. The totality of the congruences of any lattice forms a distributive lattice.

Remark 1. By the same argument we find that in the complete lattice D of lattice-congruences the infinite distributive law

$$
\left(\bigcap_{\tau} \varphi_{\tau}\right) \cup \varphi=\cap\left(\varphi_{\tau} \cup \varphi\right)
$$

is valid. But the dual infinite distributivity does not hold in general, as the following example shows:

Let L be the interval $[0,1]$ of real numbers considered as a linearly ordered lattice. Let S be the set of all the elements (namely, numbers) in L whose triadic expansions have 1 as a coefficient at least once. S consists of infinitely many mutually disjoint intervals (closed on the left and open on the right). Then let φ be a congruence of L which is obtained by defining two numbers belonging to one and the same interval in S to be congruent. On the other hand, let T_{n} be, for each natural number n, the set of numbers a in L such as

$$
-\frac{3 \nu-1}{3^{n}}-\frac{1}{3^{n+1}} \leqq a \leqq \frac{3 \nu+1}{3^{n}}+\frac{1}{3^{n+1}}\left(\nu=0,1, \ldots, 3^{n-1}\right)
$$

Then T_{n} consists of $3^{n-1}+1$ mutually disjoint intervals, and the corresponding congruence φ_{n} can be introduced similarly as above. Since the lengths of intervals in T_{n} tends to 0 (as $n \rightarrow \infty$), we have $\bigcup_{n} \varphi_{n}=I$; here I means the unit-congruence (=equality). Thus

$$
\left(\bigcup_{n} \varphi_{n}\right) \cap \varphi=\varphi .
$$

On the other hand, L is, for each n, covered by S and T_{n}, and two elements in L are connected by a finite number of intervals in S and T_{n}. Hence $\varphi_{n} \cap \varphi$ is the 0 -congruence (by which all the elements are congruent). Therefore

$$
\cup_{n}\left(\varphi_{n} \cap \varphi\right)=0 .
$$

Remark 2. Our theorem gives, as K. Yosida kindly pointed out, also a new proof to the fact that normal subgroups of a lattice-ordered group G form a distributive lattice; by a normal subgroup we mean an invariant subgroup which induces a congruence of G as a lattice-ordered group. For, a normal subgroup H gives certainly a congruence φ_{H} of G simply as a lattice, and it is easy to see that the join $\varphi_{H} \cup \varphi_{H^{\prime}}$ and the meet $\varphi_{H} \cap \varphi_{H^{\prime}}$ of the congruences φ_{H} and $\varphi_{H^{\prime}}, G$ being considered again simply as a lattice, are respectively the congruences induced by the meet and the join of the normal subgroups H, H^{\prime}.

[^0]: 1) N. Funayama, On lattice congruence, Proc. 18 (1942).
 2) Contrary to the previous note, l.c. 1).
