
602 [Vol. 18,

119. On the lVewtonlan Capacity and the Linear Measure.

By Tadasi UG/kHERI.
Taga Koto Kogyo Gakko, Ibaragi.

(Comm. by S. KAKEYA, M.I.A., Dec. 12, 1942.)

I. Given a bounded set E of points in Euclidean plane ,, let us
denote the diameter of E, as usual, by (E). We shall denote, for each
e>0, by /(E) the lower bound of all the sums .. B(E)where
{E}-.z.. is an arbitrary partition into a sequence of sets that have
diameters less than and no two of which have common points. Making
approach to zero, the number/ tends, in a monotone non-decreasing

way, to a unique limit (finite or infinite) which is called the linear
measure of E and will be denoted by / (E)

It is known that / (E) has the property of Carathfiodory’s outer
measureD and therefore all the Borel sets are measurable in the sense
of linear measure and / (E) is an additive function of linearly measur-
able set.

We shall say that / is a positive distribution of the mass m on
the Borel set E, if / is a non-negative and completely additive set
function defined for all the Borel sets in , such that / (E)=m and
(,o-E)=O.

Given a fixed point P, a variable point Q, let us denote the dis-
tance from P to Q by r. For an arbitrary distribution of positive
mass on the set E, the Lebesgue-Stieltjes integral

u(p) I d(Q)
E

represents a function (+ o) of point P which we call the Newtonian
potential due to the distribution /.

For every distribution of the unit mass on the set E, the potential
u(p), pcE, has a positive upper bound (finite or infinite). Denoting by
V(E) the lower bound of this uppor bound, for all possible distributions,
we call

C(E) !
V(E)

the newtonian capacity of the set E.
As is known, the Newtonian capac.ity C(E) is not necessarily add-

tive even in the restrictive sense.
II. Mr. Frostman has proved in his thesis) the following theorem.
Theorem I. If the set E is of linear measure zero, the Newtonian

capacity of E is zero.

1) F. Hausdorff: Dimension und iusseres Mass, Math. ann. Vol. 79 (1919)pp.
157-179.

2) Frostman: Potentiel d’quilibre et capacite des nsemble. Lurid (1935) p. 89
Mr. Frostman has proved the theorem concerning more general measure and capacity.
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This theorem shows that the linear measure is the measure that
is not greater than that of the Newtonian capacity. The theorem we
ar to prove is as follows"

Theorem. The Borel set E of finite linear measure is of Newtonian
capacity zero.

IIi. We shall summarise here some theorems that will be used
in the proof of our theorem.

Theorem 2>. The Newtonian capacity of the set E, on each point
of which the Newtonian potential due to a certain distribution of finite
positive mass is infinite, is equal to zero.

Theorem 3. Let E be the Borel set whose Newtonian capacity
is zero and F be an arbitrary Borel set, then C(E+F} C(E}+ C(F).

Denoting the closed circle of radius r wlth the center P by S(P, r),
we call

(
lim A \E. S(P, r,/ D(P, E)
+0 2r

the linear upper density of the set E at the point P.
Concerning this upper density Mr. Sierpinski has proved the follow-

ing theorem.
Theorem 4). For all point P on the set E of finite linear measure,

except at most points that belong to the set of linear measure zero,
we have

1_
_

D(P, E) 1(1)
2

IV. Now we shall proceed to prove our theorem.
We can suppose that 0 <: A (E)<::+ , for, if A (E) is zero, it

follows C(E)=0 from the theorem I. Then we can take A as the
distribution of finite mass on the set E and therefore consider the
Newtonian potential

dA(Q)
E ’PQ

Let P be an arbitrary point whose linear upper density satisfies (I) in
theorem 4. From the definition of the integral, we have

(2) u(P) liml E 1 d/(Q)
r-O E PQ

d A (Q)lim
r->O JE_S(p. r)

1) Frostman: I.c.p. 81.
2) l.c.p. 54.
3) Sierpiflski: F.M. 9 (1927). p. 182.



604 T. UGAH-’RL [Vol. 18,

where

From the hypothesis about the point P and the definition of the upper
density, we can find the decreasing sequence {r.} of positive numbers
such th

lim r=0 and lim
/ (E. S(P, r)) =:D(p, E) > 1__- 2r 2

Then, denoting by an arbitrary number so that D(P’ E) :> :> 0,
4

there exist a natural number N such that, for all n ;> N, such

/ (E-S(P, .)) >(p, E)-
2r.

< (P, E)+.
r

For such n, we obtain the following inequality

<(E" S(P, r,)) a(E. S(P,

> O(P, E)-2>
4

Hence it follows from (2) and Cauchy’s threm of convergence that

lim I d/(Q)_
r-O E-S(P, r) ’PQ

and u(P)= +.
In vertue of theorem 4, we have u(p)--/ co everywhere on the set F
where F is the subset of E such that / (E-F)=O and consequently
C(E-F)= O. Therefore from. theorem 2, it follows C(F) O, which
shows also: by theorem 3

C(E) =0.

V. In the above consideration, we have restricted ourselves to the
Borel sets for the sake of simplicity. But the result obtained remains
valid also for the generalised definition of capacity due to Frostman.
For, let E be any set with / (E) <1+ co. Since / is the regular
measure), there exists a Borel set HE such that / (E)=/ (H).
Then on the one hand, from the result already obtained, we have

1) Saks: Theory of the integral, p. 53.
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C(H)=0. On the other hand, rom the monotony) o capacity we
have

(0 <= C(E) <= C(H)
Hence we must have

C(E)=O

1) Frostman- 1. c. p. 49.


