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117. Locally Bounded Linear Topological Spaces.

By Tosio AOKI.
Mathematical Institute, Tohoku Imperial University, Sendal.

(Comm. by M. Fuw.a, ..t., Dee. 12, 1942.)

D.H. Hyersm has introdueed the notion of absolute value into
loeally bounded linear topologieal spaees, and proved that the absolute
value is upper semi-eontinuous, while J.v. Wehausenn showed that a
linear topological spaee is metrizable as an F-metric if and only if it
satisfies the first eountability axiom. Since every loeally bounded linear
topological space satisfies the first countability axiom, it is metrizable
as an F-metric. But all F-metric spaces are not neeessarily locally
bounded. Henee the problem arises: what metrie spaces are equivalent
to loeally bounded linear topologieal spaces ?

In this paper we introduce a lower or upper semi-continuous ab-
solute value into Ioeally bounded linear opologieal space and give a
condition that the absolute value is continuous. We define F%ormed
spaces and prove that they are equivalent to loeally bounded linear
topological spaces.

1. Definitions and lemmas.

Definition 1. A linear space L is called a linear topological space
if there exists a family 1I of sets U L satisfying following conditions"

1) The intersection of all the sets e 11 is
2) If U, Ve 1I there exists We 11 such that W U V.
3) If Ue 11 there exists Ve 1I such that V+V U.-)

4) If Ue 11 there exists Ve 11 such that [-1, 1IV U.)
5) If x eL, Ue 1I there exists real such that x eaU.
Definition 2. A linear topological space L is called locally bounded

if 1I satisfies
6) There exists a bounded set) V of 1I.
Lemma 1. if we put H-- [- 1, 1] V, then

1) [- 1, 1]H=H.
2) 0 implies H H.
3) H is bounded.
4) For every a, 0, a+fl=l there exists a constant k 1

independent of a, fl such that all+H kH.
5) Let 1I* (all}, a O. Then 1I* is equivalent to 11.

1) (} is the set consisting of zero element t only.
2) If S, T L, S+T is the set of all x+y, where x e S, y e T.
3) [-1,1IV is the set of all ax such as -lagl, xeV.
4) A set S in a linear topological space will be called bounded if for any Ue 11

there is a number a such as S aU. (v. Neumann) This is the same to say that for
and sequence xn} S and any real sequence (an) converging to 0, the sequence
(anXn} converges to 8. (Banach and Kolmogoroff)
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Proof. 1), 2) and 3) are clear. We begin by proving-3). Given
UelI, there exists WelI such that [-1,1]WU. Since V is
bounded, there exists a real a satisfying VaW. Hence H=[1, 1IV

a I-l, 1]W a U. To prove 4), suppose that such k does not exist.
Then there exists a sequence {a$-F/y} such that a,/ 2> 0, a-t- 1,
x,, y, eH and ax+ynH (n=l, 2, ...). Therefore (a/n)x,,+([n)y
H (n=l, 2, ...) and a,/n, ,/n-- O. From boundedness of H and the

continuity of addition we have (a,/n),+(,/n) y,-- . This is a con-
tradiction. Now if k 1, H kH kH .... By the boundedness
of H it follows H = {0} =V. This contradicts Definition 1. 5).

In the following line we assume k as a fixed number satisfying 4).
Lemma 2. If we put G=[-i, 1]V, then G is an open set

satisfying 1)-5) in Lemma 1.
Proof. 1)-5) is proved analogously as Lemma 1.
We will first show that aVi(a-O) is open. Since V is open, for

every x e V there exists Ue 1I such that x+ U V. So that ax+aU
aV. There is a WelI such as __I.wu. Hence ax+Wax+

aU aV. Thus aV is open. Now

V {V w {o} V
lal_<l lall lal-<l

a0

Therefore G is open.
Lemma 3. If we put F=[-1, liver6), then F is closed7 satisfying

1)-5) in Lemma 1.
Proof. From the definition of F, 1) and 2) are obvious. In order

to prove 3), 4) and 5) it suffices to show that Vt is bounded. For a
given Ue 11, there exists W such that W+W U. By the bounded-
ness of V there exists a real a such as V aW, and then Va V+
Va(W+W)aU.

It remains to prove F is closed. Let y e Fa. Since L satisfies the
first countability axiom, there exists a sequence {ax,} F such that
y,=a,x, -- y, a e [-1, 1], x. e V. Let a be a limiting point of {a.},
then there exists a subsequence {a.} such that ak--ae[-1, 1]. If
a=O, y=OeF, because F is bounded. If a0 then limx.=lim (1/a.)y,
-(l[a)y. Let limx,=x, then xe Vt, thus y--axeF. This completes
the proof.

2. Absolute value.

Definition 3. A linear space L will e said to be an absolute
valued space, if corresponding to each x eL there is a real number
1 (it is called absolute value of x) with the properties"

5) In the linear topological space L, S L is called open if S--Si. Si is the set
of all x for which there exists a Ue 11 with .x+ U S.

6) Vet, the closure of V, is defined by Vcl=C((CV)i). (C denotes complementation).
7) F is defined as closed if F=Fct
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1) x[::>0; x i=O implies x=O.
2) ax a I! x for every real number a.
3) x+y k x I+ k Y where k 1, and independent to x, y.
Theorem 1. In every locally bounded linear topological space L it

can be introduced an absolute value which is equivalent to the original
topology.

Conversely, in every absolute valued space L, if we define the
fundamental system by

1I’= (aS’}, a 0 where S’ =(x" x 1)
or

11"= (aS’}, a > 0 where S’= (x" x 1),

L becomes a locally bounded linear topological space.
Proof. Let xt g. 1. b. a I. 1), 2) and equivalency of 1I and the

xeaH

absolute value have been proved by D.H. Hyers).
We will show 3). Let x]=a, y 1=. For every

y e (t-t-)H. From Lemma 1. 4) it is easily seen that

x+y e (a+)H/(fl+)H< k(a// 2e)H,
i, e.

The converse is clear.
Corollary. If k=l, the absolute value is norm, i.e. xlsatisfies

triangular inequality.
Remarks. In this case H is convex.
1I’ is equivalent to 11". And let

Ixl’=g.l.b. a],

Then xl’=x
Emple 1. Let l/(p 1) the set of sequence of rl numrs

x=(x,} such that x/< . We define xl=( x ])’. Then
n=l n=l

/ h an aolute valu space with k=2". Since

N 2p’1 1 l/’)"+1 I1/’)") =2"-1(1 l+l i),

k . Let L1/( 1) denote the t of msurable functions

(t) d nM on E=(O, 1) such that ab-

solute value of x defined by an

absolute valved space with k=2’.
Theorem. 2. Let xl=g. 1. b. a I, then xl is an upper semi-c.

xeaG
tinuous absolute valve, i.e. xl satis 1), 2), 3) of Dnition 3 a

4) f every x e L and e O there exis 0 such that
[yl-lxl<e for
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Conversely for every linear space with an upper semi.continuous
absolute value we can take as the fundamental system a family of all
open sets.

.Proof. The first half has been proved by D.H. Hyers.
To prove the converse it is sufficient to show that S’=(x’lxi 1)

is an open set with respect to lI’-topology. Let x e S’, then x <2 1.
Take <: 0 such that ]xl+e <:: 1. Since the absolute value is upper
semi-continuous at x, there exists :> 0 satisfying Y I-Ixl <2 for
lY-XI. We have iyllxi+l for yx+S’. ThusS’isopen.

Theorem 3. Let xl=g. 1. b. al, then xl is a lower semi.con.
xeaF

tinuous absolute value, i.e. x satisfies 1), 2), 3) of Definition 3 and
5) For every x eL and 0 there exists 0 such that

Conversely, for every linear space with a lower semi-continuous
absolute value we can take as the fundamental system a family of all
closed sets.

Proof. 1), 2), 3) is clear. We will show 5). Since F is closed,
aF(a ::> 0) is closed. Since xl is co,tinuous at 0, it is sufficient to
prove that xl is lower semi-continuous at x =k= O. Take :> 0 satisfying
xl- :> 0. It follows x (I x I-)F. Then there exists ::> 0 such that
Y(lxi-e)F for iy-x]<3, or ]yl>lx[-e for lY-Xl<. Thus

To prove the converse it is sufficient to show that S" =(x" Ix] <:__ 1)
is closed with respect to ll"-topology, x S", then Ix] > 1. If .we
take such as x ]-=1, ::> 0, then by the lower semi-continuity of
Ix l, there exists :> 0 such that Ix I-lYl < for Ix-y] < . That is
y(IxI-)S"=S" for. yex+S". Thus for xS" there exists a
neighbourhood of which does not intersect S". This shows that S"
is closed.

We notice that for a given locally bounded linear topological space
the absolute values introduced in Theorem 1, 2, 3 are not equivalent
each other in general.

Example 3. Let L be the linear space of complex numbers
x=a+i (a, real) with absolute value

((/2._2)1/2 for 0,

-]a[ for /=0.

Then L is a linear space with upper semi-continuous absolute value
and k--v/. 11’ and 11" are equivalent to usual topology.

Example . Let L be the above linear space which has the
following absolute value

(a+/)/ for fl 0,

2]a for /=0.

In this case L is a linear space which has lower semi-continuous
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absolute value with k=V-, and 11’, 11" are also equivalent to usual
topology.

Above examples show that there exist locally bounded linear topo-
logical spaces for which the absolute values are not continuous. When
Ix! is continuous ? Answer is given by the following theorem.

Theorem . The absolute value of a given absolute valued space
L is continuous if and only if S’=(x" xl <:1) is open, and S"--
(x’l x l 1) /s closed.

Proof. Suppose that lxi is continuous. By Theorem 2, S’ is open
with respect to lI’-topology. By Theorem 3, S" is closed with respect
to ]1"-topology. Since 1I’ is equivalent to 11", and S’ is open, S" is
closed with respect to both topologies. Conversely, by the assumption
aS’(a,> 0) is open and aS"(a > 0) is closed. From Theorem 1, Remark
and Theoreme 2, 3, xl is continuous.

In Exampes 2, 3, S’ are open and S" are closed. Therefore both
absolute values are continuous, in Example 3, S’ is open, but S" is
not closed. In Example 4, S" is closed, but S’ is not open. It follows
that these absolute values are not continuous.

3. F’-norm.

It is convenient to introduce the following definition.
Definition 4. A linear space L will be called an F’-normed space

if for any x e L there corresponds a real number x II, called F’-norm,
with following properties"

1) x 0" x II-- 0 implies x O.
2) For any real a and x eL, there is a real al such that

ax ll-- a x ll. In fact a C then a 2r, where C is a
fixed constant independ of a and x.

3) x+y x +ll y If.
Remark. If we define (x, y)=llx-yll for an F’-normed space we

have an F-metric space. So that F’-norm is a special case of F’-metric.
Theorem 5. An F’-norm which is equivalent to the original topology

can be introduced into every locally bounded linear topological spece,
and conversely every F’.normed space is a locally bounded linear
topological space.

The proof of the Theorem will be devided into four steps.
(1) For F in Lemma 3, there exists a k’:> 3 such that F+F+F

k’F. Take k’= C in Definition 4, 2) and let Ix ’=g. 1. b. a !. Then

Ix I’ has following properties-
1) Ixt’0; Ixl’=0 implies

2) laxl’=iallx] where C=k’.
3) Ixl’, [y]’, Izl’ imply Ix+y+z[’2.
4) Ix i’ is equivalent to the original topology.

If we notice that x I’=l. l for xl=g. 1. b. I( I, then 1), 2) 4) are
xeaF

obvious. It remains to prove 3). Let a 2r. Ix 1’, Y I’, [z [’, 5 implies
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x,y, zek’rF, and then x+y+zek’r(F/F+F)
<:: 2r+=2&

(2) t us put Izl=g.l.b. x-x_’, where {,x2,...,-}
o-,= i=1

L and n are arbitrary. Then lzl satisfies 1), 2), 3) of Definition 4
with C=k’.

1) is clear. We will show 2). For a given > 0, ke > 0 such
that [a[ . From the definition of , there exists a sequence

{o=0, x, x2, ..., z=x} satisfying + > -_’. Thus follows
i-1

That is a x ax I. In order to prove the converse inequality, if
we notice that a=O if and only if a [=0, then we can assume that
a 0. For given e 0, there exists a sequence {y0=8, y, y, ..., y
with ]lax + y-y_ ’. It follows

Thus we have x Ill x
We will now prove the triangular inequality of llx. For a given
0 there exist {x0, x, ..., } and (y0, y, "", y} such that

If we put

then

m

Z,={ x for 0in,

x+y for i.n,

+m

i=1

Thus we obtain x+y x
(3) x is equivalent to
For, following Birkhoff’s argument:u we can prove the inquality

2
(4) Every F’-normed space is a locally bounded linear topological

space, i.e. if we take 1Y {S,} where S= (x x <: a, :> 0) the
fundamental system, then 1I’ satisfies 1)-6) in Definition 1 and 2.

The proof is easy.
From Theorems 1 and 5 we obtain the following.
Theorem 6. Locally bounded linear topological space, absolute

valued spaces and F’-normed spaces are topologically equivalent to each
other.
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4. Complex linear topological spaces.

In the above theory we can replace the real operator domain by
complex number field. That is, complex linear topological space is
defined by Definition 1 as space with complex number field as operator
domain, with modification of 4) such as

4’) Given UII there exists VII such as IV 11, where I=(a:
a <:: 1, a complex number).

Let H=IV, G IV, and F=IVan. Then without any formal change
we can use Definition 3 and 4. Lemmas, theorems and corrolaries are
all valid in this case.

References.

[1] D.H. Hyers, Revista de Ciencias Lima, Vol. 41 (1939), pp. 555-574.
[2] J.V. Wehausen, Duke Math. Jour., Vol. 4 (1938), p. 15. Cf. S. Kakutani. Proc.

12 (1936), 82-84. G. Birkhoff, Comp. Math., Vol. 3 (1936), pp. 427-430.
[3] J. von Neumann, Trans. Amer. Math. Soc., Vol. 37 (1935), pp. 1-20. We shut

out the trivial case, i.e. L consists of ero element only.


