102 [Vol. 19,

22. A Remark on Ergodic Theorems.

By Shin-ichi Izumi.

Mathematical Institute, Tohoku Imperial University, Sendai. (Comm. by M. FUJIWARA, M.I.A., March 12, 1943.)

1. G. D. Birkhoff proved the following theorems.

(B. 1) Let T be a measure preserving transformation in (0, 1) such that the inverse transformation T^{-1} is also. Then for any x=x(t) in L=L(0, 1) the limit

$$\lim_{N\to\infty} \frac{1}{N+1} \sum_{n=0}^{N} x(T^n t) \tag{1}$$

exists almost everywhere.

(B,2) Let $T^{\lambda}(-\infty < \lambda < \infty)$ be a set of transformations satisfying above condition such that $T^{\lambda}(T^{\mu}t) = T^{\lambda+\mu}t$. If $x(T^{\lambda}t)$ is measurable in the product space (λ,t) and is integrable in (0,1) with respect to t, then the limit

$$\lim_{N\to\infty} \frac{1}{N} \int_0^N x(T^{\lambda}t) d\lambda \tag{2}$$

exists almost everywhere.

These are called individual ergodic theorems. Convergence in (1) and (2) is not dominated by integrable functions in general. But Fukamiya and Wiener proved that

(FW) If T (or $T^{\lambda}(-\infty < \lambda < \infty)$ satisfies above condition and $x(t) \in L_Z$, that is, $x(t) \log^+|x(t)|$ is integrable, then (1) (or (2)) converges dominated by integrable functions almost everywhere.

This is called dominated ergodic theorem. To prove above three theorems Wiener proved the fundamental lemma:

(W) Let x(t) be a non-negative integrable function and

$$x^*(t) = 1$$
 u. b. $\frac{1}{N+1} \sum_{n=0}^{N} x(T^n t)$ $\left(\text{or} = 1$ u. b. $\frac{1}{N} \int_{0}^{N} x(T^{\lambda} t) d\lambda \right)$

then we have for any a > 0

$$((t; x^*(t) > a) \leq \int_a^1 x(t) dt.$$

- 2. In order to prove (B, 1), (B, 2) Wiener proved the mean ergodic theorem in L. But we can prove them directly by using a convergence theorem due to Kantorovitch. Kantorovitch's theorem reads as follows.
- (K) Let X and Y be regular vector lattices and $\{U_n(x)\}$ be a sequence of (t, t)-continuous operations from X to Y. Then if
- 1°. for x in a dense set D in X $U_n(x)$ is (o)-(or (t)-) convergent,

2°. for each x in X $U_n(x)$ is (o)-(or (t)-) bounded, then $U_n(x)$ is always (o)-(or (t)-) convergent.

In order to prove (B, 1) and (B, 2), we need a lemma:

Lemma. If we put $K(u) = u/(1 + \log_2^+ u)^{1+e}$ (e > 0), then $x^* \in L_K$, that is, the integral $\int_0^1 K(x^*(t))dt$, exists, where

$$x^*(t) = 1$$
 u.b. $\frac{1}{N} \int_0^N x(T^{\lambda}t) d\lambda$.

Proof. If we put $E_a = (t; x^*(t) \ge a)$, then

by (W). Thus we get the required result.

By (K) and Lemma we can now prove (B, 1) and (B, 2) easily. Let us put $U_n(x) = \frac{1}{N+1} \sum_{m=0}^{N} x(T^m t)$ which transforms L into L_K .

L and L_K are regular vector lattices and Lemma gives condition 2° in (K). As D in condition 1° we take the set of bounded measurable functions. For such D we can prove 1° somewhat easily. Thus we get (B, 1). Similarly we can prove (B, 2).

From the proof we know that the convergence in (1) and (2) is dominated by functions in L_K .

3. We will now extend (B, 2) and (B, 2).

Theorem 1. Let T be a linear transformation in L_K (or in L) such that

1°. for any $x \in L$ (or $\in L_z$)

$$\lim\sup_{n}\left|\frac{1}{n}\sum_{k=1}^{n}T^{k}x(t)\right|<\infty$$

almost everywhere, and

2°. for any bounded measurable function x there is a constant M such as $|T^nx(t)| \leq M(n=1,2,...)$, then for any $x \in L$ (or $\in L_Z$) the limit

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} T^{k} x(t)$$

exists almost everywhere.

Proof is done by the method in § 2. This contains (B, 1) and (FW). We can state the theorem containing (B, 2) and the corresponding part of (FW). We are also easy to extend this lattice-theoretically.

104 S. Izumi. [Vol. 19,

Similarly we can prove

Theorem 2. Let T be a linear transformation in L_K (or in L or in L^p (p>1)) such as $||T^n||$ (n=1,2,...) is bounded. Then for any x in L (or in L_Z or in L^p (p>1)) $\frac{1}{n}\sum_{k=1}^n T^k x(t)$ converges in L_K -mean (or L-mean or in L^p -mean).