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47. On the Domain of Existence of an Implicit Function
defined by an Integral Relation G(x,y)=0.

By Masatsugu TSuJL
Mathematical Institute, Tokyo Imperial University.
(Comm. by T. YOsIE, M.LA.,, May 12, 1943.)

1. Theorems of Julia and Gross.

Let G(x,y) be an integral function witn respect to ¥ ana y and
y(x) be an analytic function defined by G(x, y)=0 and F be its Riemann
surface spread over the z-plane. Let E be a set of points on the
x-plane, which are not covered by F. Evidently E is a closed set.

Julia? proved that E does not contain a continuum. If y(x) is
an algebroid function of order m, such that Ay x)y"+ A,(x)y™+---+
A, (x)=0, where A;(x) are integral functions of x, then F’ consists of
n sheets and covers every point on the x-plane exactly n-times, where
a branch point of F' of order k is considered as covered k-times by
F. We will prove

Theorem I. If y(x) is not an algebroid function of x, then F covers
any point on the x-plane infinitely many times, except a set of points
of capacity zero.

In this paper “ capacity ” means “logarithmic capacity.”

If we interchange x and y, we have

Let G(x,y) be an integral function with respect to x and y and
y(x) be an analytic function defined by G(x,y)=0. If y(x) does not
satisfy a relation of the form: Ayw)a"+ Ayy)a*+ -+ A4,(y) =0, where
Ay) are integral functions of y, then y(x) takes any value infinitely
many times, except a set of values of capacity zero.

This is a generalization of Picard’s theorem for a transcendental
meromorphic funection for |z | << co.

Julia’s proof depends on the following

Gross’ theorem®: Let f(z) be one-valued and regular on the
Riemann surface F, which does not cover a continuum. If f(z) tends
to zero, when z tends to any accessible boundary point of F, then
flz)=0.

We will first extend this Gross’ theorem in the following way.

Theorem II. Let f(2' be one-valued and meromorphic on a con-
nected piece F of its Riemann surface, whose projection on the z-plane
lies inside a Jordan curve C and F do mot cover a closed set E of
positive capacity, which lies with its boundary entirely inside C. If
f @) tends to zero, when 2 tends to any accessible boundary point of F,
whose projection on the z-plane lies inside C, except enumerably infinite
number of such accessible boundary points, then f(2)=0.

1) G. Julia: Sur le domaine d'existence d’'une fonction implicite défine par une
relation entiére G(v, #)—0. Bull. Soc. Math. (1926).

2) W. Gross: Zur Theorie der Differentialgleichungen mit festen kritischen
Punkten. Math. Ann. 78 (1918).
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2. Priwaloff’s theorem.

We use the following Priwaloff’s theorem® in the proof.

Theorem III. Let f(z) be meromorphic in |z|<<1 and E be a
measurable set of positive measure on |z|=1. If f(z) tends to zero,
when z tends to any point of E by the curves non-tangential to |z|=1,
then f(z) =0.

1 will give a simple proof for the sake of completeness.

Proof. We map |z|<<1 on R(s) >0 on the s=o+it=re?-plane
by z=¢(s) and put F(s)=f («:(s)). Then E corresponds to a set e of
positive measure on the t-axis. Let 4,, be a triangle determined by

three points: 0, ree®®, re % (0<00<—2"—) and s, (n=1,2,...) be

rational points in 4,, whose ecoordinates are rational numbers. We
put Fo.(t)=|F(s.+1t)| and

@, (t)=upper limit F,(t). 1)
Then &, (t)=upper ‘I’imit | F(s+1it)|. 2)

Since F.(t) is continuous, @,(f) is a measurable function and
by the hypothesis, hm w,,(t) 0 on e. Hence by Egoroff’s theorem,

hm (Pra(t) 0 umformly on a bounded closed sub-set e, of e, such that

me1 > 0.
Hence from (2) we have for a small 7,

| F(s+it) | <e, for sed,,, tee. (3)

Let 4(t) be a triangle determined by three points: t, it+ €™, it+re ™.
We add all such triangles for tee¢; and put Al=¢2 A(t). Let 4; be a

rectangle: rpcos 0, <o < Ry, |t|< M, such that F(s) has no poles
on the boundary of 4, We put d=4,+4,; then the boundary I" of 4
is a rectifiable curve, which meets the t-axis in ¢; and F'(s) is bounded
in the neighbourhood of I" and tends to zero, when s tends to e; from
the inside of I. If we consider ¢, as a set on I, then its measure
defined by arc length of I' is positive. Hence if we map the inside
of ' on |¢|<<1 by s=¢(), then, by F. and M. Riesz’ theorem?, ¢,
corresponds to a set ¢ of positive measure on |{|=1. Let G({)=

F(¢(C)) and &, &y -, Cn be the poles of G(¢) in £ <1 and H()=
G©) TI 1‘_;"(, then H(() is regular and bounded in |{|<<1 and
tends to zero, when { tends to any point of ¢ Hence by the well
known theorem, H({)=0, or f(z)=0, q.e.d.

1) M.J. Priwaloff : Sur certaines propriétes métriques des fonctions analytiques.
Jour. d. l'ecole polytechnique. (1924).

2) F.u M. Riesz: Uber die Randwerte analytischer Functionen. 4. congr. scand.
math. Stockholm. 1916.
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3. Proof of Theorem IIL

Let & be the simply connected universal covering Riemann surface
of . We map § on |2|<<1 by z=¢(x) and put F(x)=f(go(x)).
Since ¢(x) is bounded in |z|<<1, by Fatou’s theorem, lim p(z) exists
almost everywhere on |2 |=1, when x tends to |2 |=1 non-tangentially.

Let u(z) be the solution of the Dirichlet problem for the schlicht
domain bounded by C and E with the boundary condition that u(z)=0
on C and u(#)=1 on the boundary of E. Then, since cap. E>0 we
have u(2) 0. If by the mapping z=g¢(x), C corresponds to a set of
measure 27 on |x|=1, then any bounded harmonic function on @,
which vanishes on the poinis of § above C, would vanish identically.
But the above solution u(z) of the Dirichlet problem, considered as a
bounded harmonic function on §, vanishes on the points of ¥ above
C and does not vanish identically. Hence C corresponds to a set of
measure <2z on |2|=1, so that the accessible boundary points of F,
whose projections on the z-plane lies inside C correspond to a set ¢
of positive measure on |2|=1. Since, by F. Riesz’ theorem, the set
on |z|=1, which corresponds to a given point, is of measure zero,
the exceptional accessible boundary points in the Theorem correspond
to a set ¢ of measure zero on |z|=1. Hence if we put e=¢;—e,
then me=me;>>0. By the hypothesis, F'(x) tends to zero, when x
tends to any point of e non-tangendially to {x|=1. Hence by Theorem
III, F(x)=0, or f(z)=0, g.e.d.

4. Proof of Theorem I

First we will prove a lemma.

Lemma. If a disc K, i3 covered exactly m-times by F, then y(x)
becomes an algebroid function of order m,

Proof. Let G be a connected domain containing K; such that
every point of G is a center of a dise, which is covered exactly n-times
by F and E be its boundary. We will prove that G coincides with
the finite plane || <C . Suppose that E contains points in the finite
distance. From the definition of G, every point 2 (= ©) on E is
covered at most n-times by F. If x, is covered n-times by F| then
the part of F above a small disc K about x, contains n discs:
F, ..., F, consisting of onlly inner points of F, where a piece of the

Riemann surface of (x—a,) * above K is considered as k discs.

If there is no connected piece of #' above K other than F),..., F,,
then K is covered exactly n-times by F, so that K belongs to G,
which contradicts the hypothesis, that x, is a boundary point of G.
Hence there is another connected piece Fy, of F above K other than
Fy ...,F,. Then F, does not cover the common part G, of G and K
from the definition of G. Since, as Julia proved, 1 tends to zero,

y(x)
when x tends to any accessible boundary point of F' and cap. G,> 0,

if we apply Theorem II to F;, we would have ﬁso, which is

absurd. Hence every point of E is covered at most (n—1)-times by
F. Let E; be a sub-set of E, such that every point of Ej is covered
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at most, k-times by F', then Ej is a closed set and By, < By < --- < E,_;
=FE. We will prove that cap. E=0.

Suppose that cap. B> 0, then there is a certain k (0 <k <n-—1),
such that

cap. Ey=0, cap. E,=0, ..., cap. E;_;=0, cap. E;>0. 4)

We put E{=E,—E_;, then cap. El=cap. E;>0. Let ¢} be a closed
sub-set of EJ, such that cap.e}>0. Then there exists a point a; on
€}, such that cap.el(K)>0, a fortiori, cap. Ex(K)>0 for any small
disc K about 2, where we denote the part of a set e inside a disc K
by e(K).

Since e E}, x, is covered k-times by F. Hence the part of F'
above a small disc K about #, contains % discs: Fy, ..., Fy consisting
of only inner points of F. Since k <n—1, there is another connected
piece Fy of F' above K other than F,...,F}.. Since Eu(K,) is covered
k-times in Fy, ..., Fx by F, from the definition of E), Fj does not
cover Ei(K;), where K, is a disc about %, contained in K.

Since ?(1;)— tends to zero, when z tends to any accessible boundary

point of F, and cap. Ei.(K;) >0, if we apply Theorem II to F, we

would have jﬁzo’ which is absurd. Hence cap. E=0, so that
every point of E is an accessible boundary point.

Let 9,(x), ..., ¥a(x) be n branches of y(x) outside E and z, (5= )

1 1

0@ )

have algebraic singularities at .

be any point of E. Suppose that have essential

1 1

singularities and ) ey
Ys+1(%) Yn()

We put
/1 1 1, ax)
M{———— )=+ 4. ta,x),
i1 (y y,-(av)> v oyt ®)
LS | 1 1 by(z)
M(=—— )=+ 0 4.gp,
*‘-M(y y,-(x)) ¥ * yret ol
then ayx) are one-valued and meromorphic outside E and since (1 )
Y\

(:=1,2,...,8) tends to zero, when 2 tends to any point of E in the
neighbourhood U of x,, aix) are bounded in U, so that, since cap. E=0,
a;(x) are regular at ;. Since b;(x) are meromorphie at x, if we put

m(l-_1 \=1_ a@ . .
El( Y y‘.(x) ) y” + yn-l + +c,‘(a;) ’ (6)

then cix) are meromorphic at x, so that the neighbourhood of z, is
covered exactly n-times by F, which contradicts the hypothesis, that
%, is a boundary point of G. Hence G coincides with the finite plane

1) R. Nevanlinna: Eindeutige analytische Funktionen. p. 132.
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|&¢| << o. Then ci{x) are meromorphic functions for |z|<<eoo. Con-
sequently y(x) satisfies a relation of the form: Ay x)y™+ A x)y™*+---
+ A, (x)=0, where A;(x) are integral functions of . Thus the lemma
is completely proved.

By this lemma, we can prove Theorem I simply as follows.

Suppose that »(x) is not an algebroid function and its Riemann
surface F' does not cover a set E of positive capacity infinitely many
times. Let E) be a set of points, which are covered at most k-times

by F. Then E; is a closed set and By T E) < -« T Ep < -+, E=§}0Ek.
Since cap. E> 0, there is a certain k (0 < k << =), such that

cap. Ey,=0, cap. £,=0, ..., cap. E;_,=0, cap. E,>0. )

Let El=E,—E)_.;, then cap. E{=cap. E,>>0 and ¢ be a closed
sub-set of EJ, such that cap.el>>0. Then there exists a point 2 on
¢}, such that cap. ¢}(K) >0, a fortiori, cap. E(K)=>0 for any small
disc K about %, Since %€ Ep, x, is covered k-times by F, hence the
part of F' above a small disc K about x, contains k dises: Fy,..., F}
consisting of only inner points of F. Since y(x) is not an algebroid
function, we see by the lemma, that there is another connected piece
F, of F above K other than Fy, ..., F:. Since E(K;) is covered k-
times in F}, ..., Fi. by F, from the definition of Ej, F, does not cover

E(K,), where K, is a disc about %, contained in K. Since —L— tends

y(x)
to zero, when = tends to any accessible boundary point of F and

cap. E(Ky) > 0, if we apply Theorem I to F}, we would have R 0,

X

which is absurd. Hence cap. E=0, q.e. d. v

5. FEuxtension of Iversen's theorem.

We will prove the following extension of Iversen’s theorem?.

Theorem IV. Let G(x,y) be an integral function with respect to
x and y and y(x) be an analytic function defined by G(x, y)=0 and F
be its Riemann surface spread over the x-plane and suppose that y(x)
18 not an algebroid function of x. If %o (&= ) 48 covered finite times by
F, then %, 18 an asymptotic value of the imverse function x=x(y) of
y=y(x).

Proof, Let xy be covered k-times by F. We denote the disc:

|~ g% by K, (n=0,1,2,...). Then for a small 8, the part of

F above K, contains k discs: Fy, ..., F® consisting of only inner
points of F. Since y(x) is not an algebroid function, we see from the
lemma, that there is another connected piece F, of F' above K, other
than F{P, ..., F{®. Since x, is covered k-times in FQ®,..., F{® by F,
F, does not cover x. Let E, be a set of points in K; which are not
covered by F, then as we have proved in §4, cap. E,=0. Hence
there is a point & in K; which is covered by F,. Let (&) be such a

1) F. Iversen: Recherches sur les fonctions inverses des fonctions meromorphes.
Thése. Helsingfors. 1914.
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point on F, above &, where we denote a point on F, whose projection
on the z-plane is ¢ by ().

Let F be the connected part of F, above K;, which contains (&).
Similarly we see that there exists a point (§;) on F}i, whose projection
& lies inside K;. We connect (&) and (§;) by a curve (Ly) on Fy,
whose projection on the z-plane we denote by L, By the similar
way, we have points (£,) and curves (L,) on a connected piece F,
Fo>Fi>-->F,) above K,, such that &, lies in K,,, and L, lies

in K,, so that &,—>@, L.—z. Hence if we put L=%L,.. then L

is a continuous curve on the xz-plane tending to . To L, there
corresponds on the y-plane, a curve tending to infinity. Hence z is
an asymptotic value of the inverse function x=x(y) of y=v(x), q.e.d.

6. Direct transcendental singularities.

Let (x,) be a boundary point of the Riemann surface F of y(x).
Iversen called (%) a direct transcendental singularity of (), if w is
lacunary for a connected piece Fy of F above a certain disc K about
%, which contains (x) as its boundary. We will prove that the set
of points on the z-plane, which are the projections of direct trans-
cendental singularities is of capacity zero.

In §4 we have proved that the set ¢ in a disc K, which is
lacunary for a connected piece of F above K is of capacity zero.
Since there are at most enumerably infinite number of such connected
pieces above K, the set E in K, which is lacunary for some connected
piece of F above K is of capacity zero. Let K, (n=1,2,...) be discs
on the x-plane, whose centers are rational points and whose radii
are rational numbers and E, be the corresponding set in K,. Then

cap. E,=0 and hence E=§}1En is of capacity zero. K is F,, i.e. a

sum of enumerably infinite number of closed sets. Let (x) be a direct
transcendental singularity of y(x). Then %, is lacunary for a connected
piece above a certain K, which contains (%) as its boundary. Hence
%y is contained in E, and so in E. Hence the set of points on the x-
plane, which are the projections of direct transcendental singularities
is of capacity zero. Hence we have

Theorem V. Let G(x,y) be an integral function with respect to
z and y and y(x) be an analytic function defined by G(x, y)=0. Then
the set of points on the x-plane, which are the projections of the direct
transcendental singularities of y(x) is of capacity zero.



