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1. Theorems of Julia and Gross.
Let G(, y) be an integral function wm respect to x ana y and

y(x) be an analytic function defined by G(z, y)=O and F be its Riemann
surface spread over the x-plane. Let E be a set of points 9n the
-plane, which are not covered by F. Evidently E is a closed set.

Julia proved that E does not contain a continuum. If y() is
an algebroid function of order n, such that Ao()y
A()=0, where A() are integral functions of , then F consists of
n sheets and covers every point on the x-plane exactly n-times, where
a branch point of F of order k is considered as covered k-times by
F. We will prove

Theorem I. If y() is no an algebroid function of z, hen F covers
any poin on the .-plane infinitely many times, except a set of points
of capacity zero.

In this paper "capacity" means "logarithmic capacity."
If we interchange and y, we have
Let G(z, y) be an integral function with respec to and y and

y(z) be an analytic function defined by G(x, y)--0. If y(,) does not
satisfy a relation of the form Ao(y)x’*+ A(y)x"++ +A,,(y) --0, where
A(y) are integral functions of y, then y(x) takes any value infinitely
many times, except a set of values of capacity zero.

This is a generalization of Picard’s theorem for a transcendental
meromorphic function for

Julia’s proof depends on the following
Gross’ theorem: Let f(z) be one-valued and regular on the

Riemann surface F, which does not cover a continuum. If f(z) tends
to zero, when z tends to any accessible boundary point of F, then
f(z)O.

We will first extend this Gross’ theorem in the following way.
Theorem I1. Let f(z be one.valued and meromorphic on a con-

nected piece F of its Riemann surface, whose projection on the z-plane
lies inside a Jordan curve C and F do no cover a dosed set E of
positive capacity, which lies with its boundary entirdy insid C. If
f(z) tends o zero, when z tends to any accessible boundary poin of
whose projection on the z-plane lies inside C, except enumrabIy infinite
number of such accessible boundary! points, then f(z)=--0.

1) G. Julia: Sur le domaine d’existence d’une fonction implicite dfine par une
relation enti G(x, y) -0. Bull. Soc. Math. (1926).

2) W. Gross: Zur Theorie der Differentialgleichungen mit festen krien
Punkten. Math. Ann. 78 (1918).
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We use the ollowing Priwaloff’s theorem in the proof.
Theorem III. Let f(z) be, meromorphie in zl < 1 and E be, a

measurable set of positive meagre on zl=l. If f(z)tends to ro,
wh z tends to any Tinb of E by the curves non-tangential to I1
then f(z) O.

I will give a simple proof for the sake of completeness.
Proo]. We map zl < 1 on 9t(s) > 0 on the s=a+itfre-plane

by z=(s) and put F(s)=f((s)). Then E corresponds to a set e of
positive measure on the t-axis. Let dr, be a triangle determined by

three points" 0, roe, roe- 0 <: 0o

rational points in dr,, whose coordinates are rational numbers. We
put F,(t) F(s+it) and

(r,(t)fupper limit F(t). (1)

Then (Pro(t)--upper limit]F(s+it) l. (2)
seato

Since F(t) is continuous, @to(t) is a measurable function and
by the hypothesis, lira (Pro(t)=0 on e. Hence by Egoroff’s theorem,

ro
lira o(0--0 uniformly on bounded
ro-O
10.

d(O 1 ingle cletrmin by hre oins , -I-roeo, -I-ro-o.
e dd 11 uh ringles for nd

geet

rectangle" r0 cos Oo Ro, M, such hat F() has no poles
on fle boundary of . We pu -/,
is a rectifiable curve, which meet he -xis n ex and F(s) s bounded
n fle nehbourhood o F and tends o zero, when s tends t e from
the inside of F. If we consider e as a set on F, then its measure
defined by arc length of /" is positive. Hence if we map the inside
of F on !i<: 1 by s=b(), then, by F. and M. Riesz’ theorem
corresponds to a set of pos-:tiv.e measure on gl=l. Let G()=

r(()) and G, ’,-.-, be the poles of G() in [1< 1 and H(’)=

-------V-g--, then H() is regular and bounded in ! <: 1 and

tends to zero, when tends to any point of . Hence by the well
known theorem, H(’) 0, or f(z) =-- O, q.e.d.

1) M.J. Priwaloff" Sur certaines proprites m6triques des fonetions analytiques.
Jour. d. l’ecole polytechnique. (1924).

2) F. u. M. Riesz" Uber die Randwerte analytischer Functionen. 4. congr, scand.
math. Stockholm. 1916.
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3. Proof of Theorem II.
Let be the simply connected universal covering Riemann surface

of F. We map on ]zl<=l by z--(,) and put F(z)=f((x)).
Since o() is bounded in I! 1, by Fatou’s theorem, lim (x) exists
almost everywhere on [z 1, when z tends to z I-- 1 non-tangentially.

Let u(z) be the solution of the Dirichlet problem for the schlicht
domain bounded by C and E with the boundary condition that u(z}--0
on C and u(z)--1 on the boundary of E. Then, since cap. E=> 0 we
have u(z) O. If by the mapping z=(z), C corresponds to a set of
measure 2 on I1--1, then any bounded harmonic function on
which vanishes on the points of above C, would vanish identically.
But the above solution u(z) of the Dirichlet problem, considered as a
bounded harmonic function on , vanishes on the points of above
C and does not vanish identically. Hence C corresponds to a set of
meaare 2 on I1--1, so that the accessible boundary points of F,
whose projections on the z-plane lies inside C correspond to a set
of positive measure on ]-- 1. Since, by F. Riesz’ theorem, the set
on ]z I--1, which corresponds to a given point, is of measure zero,
the exceptional accessible boundary points in the Theorem correspond
to a set eo of measure zero on Il=l. Hence if we put
then ffime10. By the hypothesis, F(z) tends to zero, when
tends to any point of e non-tangentially to ix [--1. Hence by Theorem
III, F(z) =-- 0, or f(z) 0, q. e. d... Proof of Theorem I.

First we will prove a lemma.
Lemma. If a disc Ko is covered exactly n-i,nes by F, then y(x)

bcomes an algebroid function of order n.
Proof. Let G be a connected domain containing Ko, such that

every point of G is a center of a disc, which is covered exactly n-times
by F and E be its boundary. We will prove that G coincides with
the finite plane, I] 0o. Suppose that E contains points in the finite
distance. From the deflation of G, every point zo (= oo) on E is
covered at most n-times by F. If is covered n-times by F, then
the part of F above a small disc K about z contains n discs:
FI, ..., F consisting of only inner points of F, where a piece of the

Riemann surface of (z-) above K is considered as k discs.
If there is no connected piece of F above K other than F, ..., F,

then K is covered exactly n-times by F, so that K belongs to G,
which contradicts the hypothesis, that zo is a boundary point of G.
Hence there is another connected piece Fo of F above K other than
F ..., F. Then F does not cover the common part Go of G and K

1from the definition of G. Since, as Julia proved, -- tends to zero,

when z tends to any accessible boundary point of F and cap. Go > 0,
if we apply Theorem II to F0, we would have 1 = 0, which is

(=)
absurd. Hence every point of E is covered at most (n-1)-times by
F. Let E be a sub-set of E, such that every point of E is covered
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at most k-times by F, then Ek is a closed set and Eo El --" E-I
=E. We will .prove that cap.E=0.

Suppose that cap. E> 0, then there is a certain k (0 k n- 1),
such that

cap. E0 0, cap. El-- 0, ..., cap. Ek_ 0, cap. Ek > 0. (4)

We put E,=E-Ek-, then cap. E=cap. E> 0. Let e, be a closed
sub-set of E, such that cap. e, 0. Then there exists a point o on
e,, such that cap. e(K) 0, a fortiori, cap. Ek(K) 0 for any small
disc K about zo, where we denote the part of a set e inside a disc K
by e(K).

Since x0eE,, o is covered k-times by F. Hence the part of F
abov a small disc K about o contains k discs" F, ..., Fk consisting
of only inner points of F. Since k n-1, there is another connected
piece F0 of F above K other than F, ..., F. Since E(Ko) is covered
k-times in F1, ...,F by F, from the definition of Ek, F0 does not
cover E(K0), where Ko is a disc about xo contained in K.

1Since -)- tends to zero, when z tends to any accessible boundary

point of F, and cap. Ek(K0)0, if we apply Theorem II to Fo, we

would have 1 :0, which is absurd. Hence cap. E=0, so that
y(x)

every point of E is an accessible boundary point.
Let y(z), ..., y(z) be n branches of y(z) outside E and

be any point of E. Suppose that 1 1 have essential

singularities and 1 1
Y.+l()’ *’"

We put

y(x) "’
have algebraic singularities at

1 1

__
I__ +__(_)_ +... / a,,(x),,,- ,() f -1 I (5,)

1 bl()
-./1 y --j)/= +

then ai(x) are one-valued and meromorphic outside E and since 1

(i= 1, 2, ..., s) tends to zero, when x tends to any point of E in the
neighbourhood U of x, a(x) are bounded in U, so that, since cap. E--0,
a(x) are regular at x1). Since b(x) are meromorphie at z, if we put

+

then c(x) are meromorphic at Zo, so that the neighbourhood of xo is
covered exactly n-times by F, which contradicts the hypothesis, that
xo is a boundary point of G. Hel:ce G coincides with the finite plane

1) R. Nevanlinna" Eindeutige analytische Funktionen. p. 132,
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xl co. Then c(x) are meromorphic functions for ]xl < co. Con-
sequently y(x) satisfies a relation of the form A0(x)y+Al(x)-l+-.-
+A(x)--0, where As(x) are integral functions of x. Thus the lemma
is completely proved.

By this lemma, we can prove Theorem I simply as followa
Suppose that y(x) is not an algebroid function and its Riemann

surface F does not cover a set E of positive capacity infinitely many
times. Let Ek be a set of points, which are covered at most b-times

by F. Then Ek is a closed set and Eo E1 .--E ---, E--E.
Since cap. E> 0, there is a certain k (0 b < co), such that

cap. Eo--0, cap. El--0, ..., cap. E_=0, cap. E :> 0. (7)

Let E=E-E_1, then cap. E,=cap. E :> 0 and e be a closed
sub-set o E,, such that cap. e, > 0. Then there exists a point zo on
e,, such that cap. e(K)> 0, a fortiori, cap. Ek(K)> 0 for any small
disc K about zo. Since zo e E,, Zo is covered k-times by F, hence the
part o F above a small disc K about Zo contains k discs:
consisting of only inner points of F. Since y(x) is not an algebroid
function, we see by the lemma, that there is another connected piece
F0 o F above K other than F, ..., F. Since E(Ko) is covered
times in F1, ..., F by F, from the definition o E, Fo does not cover

1 tendsE(Ko), where Ko is a disc about Xo contained in K. Since

to zero, when z tends to any accessible boundary point of F and

cap. E(Ko) 0, if we apply Theorem II to Fo, we would have 1-0,
()

which is absurd. Hence cap. E-- 0, q. e. d.
5. Extension of Ivrsen’s theorem.
We will prove the following extension of Iversen’s theorem1.
Theorem IV. Let G(x, y) be an integral function with respevt to

x and y and y(x) be an analytic function defined by G(x, y}--O and F
be its Riemann surface spread over the x-plane and suppose that y(x)
is not an algebraidfunction of . If o (= co) is covered finite times by
F, th xo is an asymptotic value of the inverse function xfx(y) of
u=u(x).

Proof. Let xo be covered k-times by F. We denote the disc:

x-xo] < by K (n--O, 1, 2, ...). Then for a small , the part of
2

F above Ko contains k discs: Foa, ..., Fo() consisting of only inner
points of F. Since y(x) is not an algebroid function, we see from the
lemma, that there is another connected piece Fo of F above Ko other
than F), ..., Fo(). Since xo is covered k-times in Fo(), ..., Fo() by F,
Fo does not cover x Let Eo be a set of points in Ko which are not
covered by Fo, then as we have proved in 4, cap. Eo--0. Hence
there is a point eo in K,., which is covered by F, Let (o} be such a

1) F. Iversen: Recherches sur les fonctions inverses des fonctions meromorph.
Thee. Helsingfor 1914.
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point on Fo above 0, where we denote a point on F, whose projection
on the z-plane is z by (z).

Let F be the connected part of F0 above K, which contains (o).
Similarly we see that there exists a point () on F whose projection

lies inside K We connect (0) and (#) by a curve (Lo) on Fo,
whose projection on the -plane we denote by L By the similar
way, we have points (,) and curves (L,) on a connected piece F,
(Fo F ---: F,) above K, such that ,. lies in K=+ and L lies

in K, so that #-*zo, L=--,z Hence if we put L--. L. then L
w--0

is a continuous curve on the z-plane tending to To L, there
corresponds on the y-plane, a curve tending to infinity. Hence zo is
an asymptotic value of the inverse function z--z(y) of y--y(), q.e.d.

6. Direct transcendental singularities.
Let (xo) be a boundary pint of the Riemann surface F of y(x).

Iversen called (xo) a direct transcendental singularity of y(x), if xo is
lacunary for a connected piece F0 of F above a certain disc K about
xo, which contains () as its boundary. We will prove that the set
of points on the x-plane, which are the projections of direct trans-
cendental singularities is of capacity zero.

In 4 we have proved that the set e in a disc K, which is
lacunary for a connected piece of F above K is of capacity zero.
Since there are at most enumerably infinite number of such connected
pieces above K, the set E in K, which is lacunary for some connected
piece of F above K is of capacity zero. Let / (n--l, 2, ...) be discs
on the x-plane, whose centers are rational points and whose radii
are rational numbers and E. be the corresponding set in K. Then

cap. E=O and hence E=.E is of capacity zero. E is F,, i.e. a

sum of enumerably infinite number of closed sets. Let (0)be a direct
transcendental singularity of y(x). Then is lacunary for a connected
piece above a certain K., which contains (xo) as its boundar.v. Hence
xo is contained in E, and so in E. Hence the set of points on the x-
plane, which are the projections of direct transcendental singularities
is o capacity zero. Hence we have

Theorem V. Let G(x, y) be an integral funvt with respect to
x and y and y(z) be an analytic function defined by G(x, y)--0. Then
the set of points on the x-plane, which are the projevtio of the direct
ranscendental singularities of y(x) is of capacity zero.


