47. On the Domain of Existence of an Implicit Function defined by an Integral Relation G(x, y)=0.

By Masatsugu TSUJI.

Mathematical Institute, Tokyo Imperial University. (Comm. by T. YOSIE, M.I.A., May 12, 1943.)

1. Theorems of Julia and Gross.

Let G(x, y) be an integral function with respect to x and y and y(x) be an analytic function defined by G(x, y) = 0 and F be its Riemann surface spread over the x-plane. Let E be a set of points on the x-plane, which are not covered by F. Evidently E is a closed set.

Julia¹⁾ proved that E does not contain a continuum. If y(x) is an algebroid function of order n, such that $A_0(x)y^n + A_1(x)y^{n+1} + \cdots + A_n(x) = 0$, where $A_i(x)$ are integral functions of x, then F consists of n sheets and covers every point on the x-plane exactly n-times, where a branch point of F of order k is considered as covered k-times by F. We will prove

Theorem I. If y(x) is not an algebroid function of x, then F covers any point on the x-plane infinitely many times, except a set of points of capacity zero.

In this paper "capacity" means "logarithmic capacity."

If we interchange x and y, we have

Let G(x, y) be an integral function with respect to x and y and y(x) be an analytic function defined by G(x, y) = 0. If y(x) does not satisfy a relation of the form: $A_0(y)x^n + A_1(y)x^{n+1} + \cdots + A_n(y) = 0$, where $A_i(y)$ are integral functions of y, then y(x) takes any value infinitely many times, except a set of values of capacity zero.

This is a generalization of Picard's theorem for a transcendental meromorphic function for $|x| < \infty$.

Julia's proof depends on the following

Gross' theorem²: Let f(z) be one-valued and regular on the Riemann surface F, which does not cover a continuum. If f(z) tends to zero, when z tends to any accessible boundary point of F, then $f(z) \equiv 0$.

We will first extend this Gross' theorem in the following way.

Theorem II. Let f(z) be one-valued and meromorphic on a connected piece F of its Riemann surface, whose projection on the z-plane lies inside a Jordan curve C and F do not cover a closed set E of positive capacity, which lies with its boundary entirely inside C. If f(z) tends to zero, when z tends to any accessible boundary point of F, whose projection on the z-plane lies inside C, except enumerably infinite number of such accessible boundary points, then $f(z) \equiv 0$.

¹⁾ G. Julia: Sur le domaine d'existence d'une fonction implicite défine par une relation entière G(x, y)=0. Bull. Soc. Math. (1926).

²⁾ W. Gross: Zur Theorie der Differentialgleichungen mit festen kritischen Punkten. Math. Ann. **78** (1918).

2. Privaloff's theorem.

We use the following Priwaloff's theorem¹⁾ in the proof.

Theorem III. Let f(z) be meromorphic in |z| < 1 and E be a measurable set of positive measure on |z|=1. If f(z) tends to zero, when z tends to any point of E by the curves non-tangential to |z|=1, then $f(z) \equiv 0$.

I will give a simple proof for the sake of completeness.

Proof. We map |z| < 1 on $\Re(s) > 0$ on the $s = \sigma + it = re^{i\theta}$ -plane by $z = \varphi(s)$ and put $F(s) = f(\varphi(s))$. Then E corresponds to a set e of positive measure on the t-axis. Let Δ_{r_0} be a triangle determined by three points: $0, r_0 e^{i\theta_0}, r_0 e^{-i\theta_0}$ $\left(0 < \theta_0 < \frac{\pi}{2}\right)$ and s_n (n=1, 2, ...) be rational points in Δ_{r_0} , whose coordinates are rational numbers. We put $F_n(t) = |F(s_n + it)|$ and

$$\mathcal{P}_{r_0}(t) = \text{upper} \lim F_n(t). \tag{1}$$

Then

$$\varphi_{r_0}(t) = \operatorname{upper}_{\substack{s \in \mathcal{A}_{r_0}}} \inf |F(s+it)|.$$
(2)

Since $F_n(t)$ is continuous, $\varphi_{r_0}(t)$ is a measurable function and by the hypothesis, $\lim_{r_0 \to 0} \varphi_{r_0}(t) = 0$ on *e*. Hence by Egoroff's theorem, $\lim_{r_0 \to 0} \varphi_{r_0}(t) = 0$ uniformly on a bounded closed sub-set e_1 of *e*, such that $me_1 > 0$.

Hence from (2) we have for a small r_0 ,

$$|F(s+it)| < \varepsilon, \text{ for } s \in \Delta_{r_0}, t \in e_1.$$
(3)

Let $\Delta(t)$ be a triangle determined by three points: $it, it+r_0e^{i\theta_0}, it+r_0e^{-i\theta_0}$. We add all such triangles for $t \in e_1$ and put $\Delta_1 = \sum_{t \in e_1} \Delta(t)$. Let Δ_2 be a rectangle: $r_0 \cos \theta_0 \leq \sigma \leq R_{0}$, $|t| \leq M$, such that F(s) has no poles on the boundary of Δ_2 . We put $\Delta = \Delta_1 + \Delta_2$, then the boundary Γ of Δ is a rectifiable curve, which meets the t-axis in e_1 and F(s) is bounded in the neighbourhood of Γ and tends to zero, when s tends to e_1 from the inside of Γ . If we consider e_1 as a set on Γ , then its measure defined by arc length of Γ is positive. Hence if we map the inside of Γ on $|\zeta| < 1$ by $s = \psi(\zeta)$, then, by F. and M. Riesz' theorem², e_1 corresponds to a set ϵ_1 of positive measure on $|\zeta| = 1$. Let $G(\zeta) = F(\psi(\zeta))$ and $\zeta_1, \zeta_2, ..., \zeta_n$ be the poles of $G(\zeta)$ in $|\zeta| < 1$ and $H(\zeta) = G(\zeta) \prod_{\nu=1}^n \frac{\zeta - \zeta_{\nu}}{1 - \zeta_{\nu}\zeta}$, then $H(\zeta)$ is regular and bounded in $|\zeta| < 1$ and tends to zero, when ζ tends to any point of ϵ_1 . Hence by the well known theorem, $H(\zeta) \equiv 0$, or $f(z) \equiv 0$, q. e. d.

¹⁾ M.J. Priwaloff: Sur certaines propriétes métriques des fonctions analytiques. Jour. d. l'ecole polytechnique. (1924).

²⁾ F. u. M. Riesz: Über die Randwerte analytischer Functionen. 4. congr. scand. math. Stockholm. 1916.

3. Proof of Theorem II.

No. 5.]

Let \mathfrak{F} be the simply connected universal covering Riemann surface of F. We map \mathfrak{F} on |x| < 1 by $z = \varphi(x)$ and put $F(x) = f(\varphi(x))$. Since $\varphi(x)$ is bounded in |x| < 1, by Fatou's theorem, $\lim \varphi(x)$ exists almost everywhere on |x|=1, when x tends to |x|=1 non-tangentially.

Let u(z) be the solution of the Dirichlet problem for the schlicht domain bounded by C and E with the boundary condition that u(z)=0on C and u(z)=1 on the boundary of E. Then, since cap. E>0 we have $u(z) \neq 0$. If by the mapping $z = \varphi(x)$, C corresponds to a set of measure 2π on |x|=1, then any bounded harmonic function on \mathcal{F} , which vanishes on the points of \mathcal{F} above C, would vanish identically. But the above solution u(z) of the Dirichlet problem, considered as a bounded harmonic function on F, vanishes on the points of F above C and does not vanish identically. Hence C corresponds to a set of measure $< 2\pi$ on |x|=1, so that the accessible boundary points of F, whose projections on the z-plane lies inside C correspond to a set e_1 of positive measure on |x|=1. Since, by F. Riesz' theorem, the set on |x|=1, which corresponds to a given point, is of measure zero, the exceptional accessible boundary points in the Theorem correspond to a set e_0 of measure zero on |x|=1. Hence if we put $e=e_1-e_0$, then $m_e = m_{e_1} > 0$. By the hypothesis, F(x) tends to zero, when x tends to any point of e non-tangentially to |x|=1. Hence by Theorem III, $F(x) \equiv 0$, or $f(z) \equiv 0$, q. e. d.

4. Proof of Theorem I.

First we will prove a lemma.

Lemma. If a disc K_0 is covered exactly n-times by F, then y(x) becomes an algebroid function of order n.

Proof. Let G be a connected domain containing K_0 , such that every point of G is a center of a disc, which is covered exactly *n*-times by F and E be its boundary. We will prove that G coincides with the finite plane $|x| < \infty$. Suppose that E contains points in the finite distance. From the definition of G, every point $x_0 \ (= \infty)$ on E is covered at most *n*-times by F. If x_0 is covered *n*-times by F, then the part of F above a small disc K about x_0 contains *n* discs: F_1, \ldots, F_n consisting of only inner points of F, where a piece of the

Riemann surface of $(x-x_0)^{\frac{1}{k}}$ above K is considered as k discs.

If there is no connected piece of F above K other than F_1, \ldots, F_n , then K is covered exactly *n*-times by F, so that K belongs to G, which contradicts the hypothesis, that x_0 is a boundary point of G. Hence there is another connected piece F_0 of F above K other than F_1, \ldots, F_n . Then F_0 does not cover the common part G_0 of G and Kfrom the definition of G. Since, as Julia proved, $\frac{1}{y(x)}$ tends to zero, when x tends to any accessible boundary point of F and cap. $G_0 > 0$, if we apply Theorem II to F_0 , we would have $\frac{1}{y(x)} \equiv 0$, which is absurd. Hence every point of E is covered at most (n-1)-times by F. Let E_k be a sub-set of E, such that every point of E_k is covered

237

at most k-times by F, then E_k is a closed set and $E_0 < E_1 < \cdots < E_{n-1} = E$. We will prove that cap. E = 0.

Suppose that cap. E > 0, then there is a certain k ($0 \le k \le n-1$), such that

cap.
$$E_0 = 0$$
, cap. $E_1 = 0$, ..., cap. $E_{k-1} = 0$, cap. $E_k > 0$. (4)

We put $E_k^0 = E_k - E_{k-1}$, then cap. $E_k^0 = \text{cap. } E_k > 0$. Let e_k^0 be a closed sub-set of E_k^0 , such that cap. $e_k^0 > 0$. Then there exists a point x_0 on e_k^0 , such that cap. $e_k^0(K) > 0$, a fortiori, cap. $E_k(K) > 0$ for any small disc K about x_0 , where we denote the part of a set e inside a disc K by e(K).

Since $x_0 \in E_k^0$, x_0 is covered k-times by F. Hence the part of F above a small disc K about x_0 contains k discs: F_1, \ldots, F_k consisting of only inner points of F. Since $k \leq n-1$, there is another connected piece F_0 of F above K other than F_1, \ldots, F_k . Since $E_k(K_0)$ is covered k-times in F_1, \ldots, F_k by F, from the definition of E_k , F_0 does not cover $E_k(K_0)$, where K_0 is a disc about x_0 contained in K.

Since $\frac{1}{y(x)}$ tends to zero, when x tends to any accessible boundary point of F, and cap. $E_k(K_0) > 0$, if we apply Theorem II to F_0 , we would have $\frac{1}{y(x)} \equiv 0$, which is absurd. Hence cap. E=0, so that every point of E is an accessible boundary point.

Let $y_1(x), ..., y_n(x)$ be *n* branches of y(x) outside *E* and $x_0 \ (\neq \infty)$ be any point of *E*. Suppose that $\frac{1}{y_1(x)}, ..., \frac{1}{y_s(x)}$ have essential singularities and $\frac{1}{y_{s+1}(x)}, ..., \frac{1}{y_n(x)}$ have algebraic singularities at x_0 . We put

$$\begin{cases} \prod_{i=1}^{s} \left(\frac{1}{y} - \frac{1}{y_i(x)}\right) = \frac{1}{y^s} + \frac{a_i(x)}{y^{s-1}} + \dots + a_s(x) , \\ \prod_{i=s+1}^{n} \left(\frac{1}{y} - \frac{1}{y_i(x)}\right) = \frac{1}{y^{n-s}} + \frac{b_i(x)}{y^{n-s-1}} + \dots + b_{n-s}(x) , \end{cases}$$
(5)

then $a_i(x)$ are one-valued and meromorphic outside E and since $\frac{1}{y_i(x)}$ (i=1, 2, ..., s) tends to zero, when x tends to any point of E in the neighbourhood U of x_0 , $a_i(x)$ are bounded in U, so that, since cap. E=0, $a_i(x)$ are regular at x_0^{1} . Since $b_i(x)$ are meromorphic at x_0 , if we put

$$\prod_{i=1}^{n} \left(\frac{1}{y} - \frac{1}{y_i(x)} \right) = \frac{1}{y^n} + \frac{c_1(x)}{y^{n-1}} + \dots + c_n(x) , \qquad (6)$$

then $c_i(x)$ are meromorphic at x_0 , so that the neighbourhood of x_0 is covered exactly *n*-times by F, which contradicts the hypothesis, that x_0 is a boundary point of G. Hence G coincides with the finite plane

238

¹⁾ R. Nevanlinna: Eindeutige analytische Funktionen. p. 132.

 $|x| < \infty$. Then $c_i(x)$ are meromorphic functions for $|x| < \infty$. Consequently y(x) satisfies a relation of the form: $A_0(x)y^n + A_1(x)y^{n-1} + \cdots + A_n(x) = 0$, where $A_i(x)$ are integral functions of x. Thus the lemma is completely proved.

By this lemma, we can prove Theorem I simply as follows.

Suppose that y(x) is not an algebroid function and its Riemann surface F does not cover a set E of positive capacity infinitely many times. Let E_k be a set of points, which are covered at most k-times by F. Then E_k is a closed set and $E_0 < E_1 < \cdots < E_k < \cdots, E = \sum_{k=0}^{\infty} E_k$. Since cap. E > 0, there is a certain k $(0 \le k < \infty)$, such that

cap. $E_0 = 0$, cap. $E_1 = 0$, ..., cap. $E_{k-1} = 0$, cap. $E_k > 0$. (7)

Let $E_k^0 = E_k - E_{k-1}$, then cap. $E_k^0 = \operatorname{cap}$. $E_k > 0$ and e_k^0 be a closed sub-set of E_k^0 , such that cap. $e_k^0 > 0$. Then there exists a point x_0 on e_k^0 , such that cap. $e_k^0(K) > 0$, a fortiori, cap. $E_k(K) > 0$ for any small disc K about x_0 . Since $x_0 \in E_k^0$, x_0 is covered k-times by F, hence the part of F above a small disc K about x_0 contains k discs: F_1, \ldots, F_k consisting of only inner points of F. Since y(x) is not an algebroid function, we see by the lemma, that there is another connected piece F_0 of F above K other than F_1, \ldots, F_k . Since $E_k(K_0)$ is covered ktimes in F_1, \ldots, F_k by F, from the definition of E_k , F_0 does not cover $E_k(K_0)$, where K_0 is a disc about x_0 contained in K. Since $\frac{1}{y(x)}$ tends to zero, when x tends to any accessible boundary point of F and cap. $E_k(K_0) > 0$, if we apply Theorem II to F_0 , we would have $\frac{1}{y(x)} \equiv 0$, which is absurd. Hence cap. E = 0, q. e. d.

5. Extension of Iversen's theorem.

We will prove the following extension of Iversen's theorem¹⁾.

Theorem IV. Let G(x, y) be an integral function with respect to x and y and y(x) be an analytic function defined by G(x, y)=0 and F be its Riemann surface spread over the x-plane and suppose that y(x) is not an algebroid function of x. If $x_0 \ (\neq \infty)$ is covered finite times by F, then x_0 is an asymptotic value of the inverse function x=x(y) of y=y(x).

Proof. Let x_0 be covered k-times by F. We denote the disc: $|x-x_0| \leq \frac{\delta}{2^n}$ by K_n (n=0, 1, 2, ...). Then for a small δ , the part of F above K_0 contains k discs: $F_0^{(1)}, \ldots, F_0^{(k)}$ consisting of only inner points of F. Since y(x) is not an algebroid function, we see from the lemma, that there is another connected piece F_0 of F above K_0 other than $F_0^{(1)}, \ldots, F_0^{(k)}$. Since x_0 is covered k-times in $F_0^{(1)}, \ldots, F_0^{(k)}$ by F, F_0 does not cover x_0 . Let E_0 be a set of points in K_0 which are not covered by F_0 , then as we have proved in § 4, cap. $E_0=0$. Hence there is a point ξ_0 in K_2 , which is covered by F_0 . Let (ξ_0) be such a

¹⁾ F. Iversen: Recherches sur les fonctions inverses des fonctions meromorphes. Thèse. Helsingfors. 1914.

point on F_0 above ξ_0 , where we denote a point on F, whose projection on the x-plane is x by (x).

Let F_1 be the connected part of F_0 above K_1 , which contains (ξ_0) . Similarly we see that there exists a point (ξ_1) on F_1 , whose projection ξ_1 lies inside K_8 . We connect (ξ_0) and (ξ_1) by a curve (L_0) on F_0 , whose projection on the x-plane we denote by L_0 . By the similar way, we have points (ξ_n) and curves (L_n) on a connected piece F_n $(F_0 > F_1 > \cdots > F_n)$ above K_n , such that ξ_n lies in K_{n+2} and L_n lies in K_n , so that $\xi_n \to x_0$. Hence if we put $L = \sum_{n=0}^{\infty} L_n$, then L is a continuous curve on the x-plane tending to x_0 . To L, there corresponds on the y-plane, a curve tending to infinity. Hence x_0 is an asymptotic value of the inverse function x = x(y) of y = y(x), q. e. d. 6. Direct transcendental singularities.

Let (x_0) be a boundary point of the Riemann surface F of y(x). Iversen called (x_0) a direct transcendental singularity of y(x), if x_0 is lacunary for a connected piece F_0 of F above a certain disc K about x_0 , which contains (x_0) as its boundary. We will prove that the set of points on the x-plane, which are the projections of direct transcendental singularities is of capacity zero.

In §4 we have proved that the set e in a disc K, which is lacunary for a connected piece of F above K is of capacity zero. Since there are at most enumerably infinite number of such connected pieces above K, the set E in K, which is lacunary for some connected piece of F above K is of capacity zero. Let K_n (n=1, 2, ...) be discs on the x-plane, whose centers are rational points and whose radii are rational numbers and E_n be the corresponding set in K_n . Then cap. $E_n=0$ and hence $E=\sum_{n=1}^{\infty}E_n$ is of capacity zero. E is F_n , i.e. a sum of enumerably infinite number of closed sets. Let (x_0) be a direct transcendental singularity of y(x). Then x_0 is lacunary for a connected piece above a certain K_n , which contains (x_0) as its boundary. Hence x_0 is contained in E_n and so in E. Hence the set of points on the xplane, which are the projections of direct transcendental singularities is of capacity zero. Hence we have

Theorem V. Let G(x, y) be an integral function with respect to x and y and y(x) be an analytic function defined by G(x, y)=0. Then the set of points on the x-plane, which are the projections of the direct transcendental singularities of y(x) is of capacity zero.