74. On Cardinal Numbers Related with a Compact Abelian Group.

By Shizuo Kakutani.
Mathematical Institute, Osaka Imperial University. (Comm. by T. Takagi, m.I.A., July 12, 1943.)

§1. Throughout the present paper we use the following notation:
(1) $\mathfrak{p}(A)=$ the cardinal number of a set A.

Let G be a compact abelian group containing an infinite number of elements, and let us put
(2) $\mathfrak{b}(G)=$ the smallest cardinal number $\mathfrak{p}(\Gamma)$ of a system $\mathfrak{B}(0)=$ $\left\{V_{r}(0) \mid \gamma \in \Gamma\right\}$ of open neighborhoods $V_{r}(0)$ of the zero element 0 of G which defines ${ }^{1)}$ the topology of G at 0 ,
(3) $\mathfrak{o}(G)=$ the smallest cardinal number $\mathfrak{p}(\Gamma)$ of a system $\mathfrak{O}=$ $\left\{O_{r} \mid r \in \Gamma\right\}$ of open subsets O_{r} of G which defines ${ }^{2}$ the topology of G,
(4) $\mathfrak{d}(G)=$ the smallest cardinal number $\mathfrak{l}(D)$ of a subset D of G which is everywhere dense in G.

The purpose of the present paper is to evaluate the cardinal numbers $\mathfrak{p}(G), \mathfrak{p}(G), \mathfrak{p}(G)$ and $\mathfrak{p}(G)$ in terms of the cardinal number $\mathfrak{m}=p\left(G^{*}\right)$ of the discrete character group G^{*} of G. The main results may be stated as follows:

Theorem 1. $\mathfrak{p}(G)=2^{\mathrm{m}}$.
Theorem 2. $\mathfrak{v}(G)=\mathfrak{v}(G)=\mathfrak{m}$.
Theorem 3. $\mathfrak{d}(G)=\mathfrak{n}$, where \mathfrak{n} is the smallest cardinal number which satisfies $2^{n} \geqq m$.

Theorem 1 is a generalization of the fact that a compact abelian group containing an infinite number of elements has always a cardinal number $\geqq \mathrm{c}$, and that there is no compact abelian group whose cardinal number is exactly κ_{0}. Further, assuming the generalized continuum hypothesis: $2^{\wedge k} a=\aleph_{a+1}$, it follows from Theorem 1 that there is no compact abelian group whose cardinal number is exactly κ_{a} if α is a limit ordinal. Theorem 2 implies as a special case that a compact abelian group G is separable ${ }^{3 \text {) }}$ (and hence metrisable) if and only if the discrete character group G^{*} of G is countable, and if and only if

1) A system $\mathfrak{} \mathfrak{Y}(a)=\left\{V_{r}(a) \mid \gamma \in \Gamma\right\}$ of neighborhoods $V_{\gamma}(a)$ of a point a of a topological space Ω defines the topology of Ω at a if, for any neighborhood $V(a)$ of a in Ω, there exists a $r \in \Gamma$ such that $V_{\gamma}(a) \leqq V(a)$.
2) A system $\Omega:\left\{O_{r} \mid \gamma \in \Gamma\right\}$ of open subsets O_{r} of a topological space Ω defines the topology of Ω if, for any $a \in \Omega$ and for any neighborhood $V(a)$ of a in Ω, there exists a $r \in \Gamma$ such that $a \in O_{r} \leqq V(a)$.
3) A topological space Ω is separable (=satisfies the second countability axiom of Hausdorff) if there exists a countable family $D=\left\{O_{n} \mid n=1,2, \ldots\right\}$ of open subsets O_{n} of Ω which defines the topology of Ω.
G satisfies the first countability axiom of Hausdorff at the zero element 0 of G^{4}. Finally, from Theorem 3 we see that there usually exists, in a compact abelian group G, a dense subset D of G whose cardinal number $\mathfrak{p}(D)$ is smaller than the cardinal number $\mathfrak{p}\left(G^{*}\right)$ of the discrete character group G^{*} of G, which as we already know by Theorem 2 is equal to $D(G)$. For example, in a compact abelian group G with $p(G)=2^{\text {c }}$ (i.e. with $p\left(G^{*}\right)=c$ because of Theorem 1), there always exists a countable subset D of G (or even a countable subgroup H of G) which is dense in G. This fact, however, is not surprising since we already know^{5}) that there exists a monothetic or a solenoidal compact abelian group which is not separable. Theorem 3 only shows that this is quite a natural phenomenon. If we again assume the generalized continuum hypothesis, then $\mathfrak{n}=\mathfrak{m}$ if and only if $\mathfrak{m}=\boldsymbol{\kappa}_{a}$ with a limit ordinal a, and $n=\kappa_{a}$ if $m=\kappa_{a+1}$.

Theorem 1,2 and 3 are all clear if $\mathfrak{m}=\aleph_{0}$. Hence, throughout the rest of this paper we always assume that $m>\kappa_{0}$.
§ 2. Proof of Theorem 1. Let G be a compact abelian group containing an infinite number of elements, and let G^{*} be the discrete character group of G. Since every $a \in \boldsymbol{G}$ can be considered as a realvalued (mod.1) function ${ }^{6)} \chi\left(a^{*}\right)=\left(a, a^{*}\right)$ defined on G^{*}, and since for any pair $\{a, b\} \leqq G$ with $a \neq b$ there exists an $a^{*} \in G^{*}$ with (a, a^{*}) \neq (b, a^{*}), so we see that $\mathfrak{p}(G) \leqq c^{m}=2^{m}$.

In order to show that $\mathfrak{p}(G) \geqq 2^{\mathrm{m}}$, let us observe how a character $\chi\left(a^{*}\right)$ on G^{*} can be defined constructively by transfinite induction: Let

$$
\begin{equation*}
G^{*}=\left\{a_{a}^{*} \mid 0 \leqq \alpha<\omega(\mathfrak{m})\right\} \tag{5}
\end{equation*}
$$

be a well-ordering of all elements of G^{*} such that $a_{0}^{*}=0^{*}$ ($=$ the zero element of G^{*}), where $\omega(m)$ is the smallest ordinal number which corresponds to the cardinal number m . Let us divide G^{*} into three classes A_{1}^{*}, A_{2}^{*} and A_{3}^{*} : the first class A_{1}^{*} consists of $a_{0}^{*}=0^{*}$ and of all a_{a}^{*} which is contained in a subgroup H_{a}^{*} of G^{*} generated by $\left\{a_{\beta}^{*} \mid 0 \leqq \beta<\alpha\right\}$; the second class A_{2}^{*} consists of all a_{a}^{*} such that $a_{a}^{*} \bar{\epsilon} H_{a}^{*}$ and $m a_{a}^{*} \in H_{a}^{*}$ for some integer $m>1$; and finally the third class A_{3}^{*} consists of all a_{a}^{*} such that $m a_{a}^{*} \bar{\epsilon} H_{a}^{*}$ for $m=1,2, \ldots$. It is then easy to see that A_{2}^{*} and A_{3}^{*} together generate G^{*}, and so $\mathfrak{p}\left(A_{2}^{*} \cup A_{3}^{*}\right)=\mathfrak{m}$, since by assumption $\mathfrak{m}>\boldsymbol{\aleph}_{0}$. Let us now define a character $\chi\left(a^{*}\right)$ on G^{*} constructively by transfinite induction : for each $a_{a}^{*} \in A_{1}^{*}$, the value $\chi\left(a_{a}^{*}\right)$ is uniquely determined by the values $\left\{\chi\left(a_{\beta}^{*}\right) \mid\right.$ $\beta<\alpha\}$; for each $a_{a}^{*} \in A_{2}^{*}$, let m_{a} be the smallest positive integer such that $m_{a} a_{a}^{*} \in H_{a}^{*} \quad$ Then there are exactly m_{a} different possibilities to define $\chi\left(a_{a}^{*}\right)$, namely,

[^0]\[

$$
\begin{equation*}
\chi\left(a_{a}^{*}\right)=\frac{1}{m_{a}} \sum_{p=1}^{k} n_{p} a_{\beta_{p}}^{*}+\frac{j}{m_{a}} \quad(\bmod .1), j=0,1, \ldots, m_{a}-1 \tag{6}
\end{equation*}
$$

\]

if

$$
\begin{equation*}
m_{a} a_{a}^{*}=\sum_{p=1}^{k} n_{p} a_{\beta_{p}}^{*} \in H_{a}^{*}, \quad 0<\beta_{1}<\cdots<\beta_{n}<\alpha . \tag{7}
\end{equation*}
$$

Finally, for each $a_{a}^{*} \in A_{3}^{*}$, the value $\chi\left(a_{a}^{*}\right)$ can be chosen arbitrarily (mod.1). From these facts follows immediately that $\mathfrak{p}(G) \geqq 2^{p\left(A_{2}^{*}-A_{3}^{*}\right)}$ $=2^{\mathrm{m}}$, as we wanted to prove. This completes the proof of Theorem 1.
§3. Proof of Theorem 2. Let G^{*} be the discrete character group of a compact abelian group G. It is easy to see that a defining neighborhood system $\mathfrak{B}(0)=\left\{V_{\tau}(0) \mid \gamma \in \Gamma\right\}$ of the zero element 0 of G is given by

$$
\begin{gather*}
V_{r}(0)=\left\{a| |\left(a, a_{p}^{*}\right) \left\lvert\,<\frac{1}{m}\right., p=1, \ldots, k\right\} \tag{8}\\
\Gamma=\left\{r=\left\{a_{1}^{*}, \ldots, a_{k}^{*} ; m\right\} \mid\left\{a_{1}^{*}, \ldots, a_{k}^{*}\right\} \leqq G^{*} ; k, m=1,2, \ldots\right\} .
\end{gather*}
$$

From this follows easily that $\mathfrak{b}(G) \leqq \mathfrak{p}(\Gamma)=\mathfrak{p}\left(G^{*}\right)=\mathfrak{m}$.
In order to show that $\mathfrak{p}(G) \geqq \mathfrak{m}$, let $\mathfrak{B}(0)=\left\{V_{r}(0) \mid \gamma \in \Gamma\right\}$ be a family of neighborhoods $V_{r}(0)$ of the zero element 0 of G which defines the topology of G at 0 and such that $p(\Gamma)=\mathfrak{b}(G)$. For each $r \in \Gamma$, let H_{r} be a closed subgroup of G contained in $V_{r}(0)$ such that the factor group $F_{r}=G / H_{r}$ is a compact separable abelian group. It is then clear that the discrete character group F_{r}^{*} of F_{r} is countable. Let us consider F_{r}^{*} as the family of all continuous characters on G which vanish identically on $H_{r} . \quad F_{r}^{*}$ is then a subgroup of G^{*}, and we claim that

$$
\begin{equation*}
G^{*}=\bigcup_{r \in \Gamma} F_{\gamma}^{\prime} . \tag{10}
\end{equation*}
$$

In order to prove (10), let a_{0}^{*} be an arbitrary element of G^{*} and let us put

$$
\begin{equation*}
V_{0}(0)=\left\{a| |\left(a, a_{0}^{*}\right) \left\lvert\,<\frac{1}{4}\right.\right\} \tag{11}
\end{equation*}
$$

Then $V_{0}(0)$ is an open neighborhood of the zero element 0 of G. Let now $\gamma \in I^{\prime}$ be such that $V_{r}(0) \leqq V_{0}(0)$, and let H_{r} be a closed subgroup of G contained in $V_{r}(0)$ as defined above. Then $a \in H_{r}$ implies $n a \in H_{r}$, hence $\left|\left(n a, a_{0}^{*}\right)\right|<1 / 4(\bmod .1)$ for $n=1,2, \ldots$ and consequently (a, a_{0}^{*}) $=0$. Thus the character $\chi(a)=\left(a, a_{0}^{*}\right)$ vanishes identically on H_{r}, and so we must have $a_{0}^{*} \in F_{r}^{*}$. Since a_{0}^{*} is an arbitrary element of G^{*}, this proves (10). From (10) follows immediately that $m=p\left(G^{*}\right) \leqq p(I)$ $=\mathfrak{b}(G)$.

We shall next show that $\mathfrak{p}(G)=\mathfrak{b}(G)$. It is clear that $\mathfrak{o}(G) \geqq \mathfrak{p}(G)$. In order to prove that $\mathfrak{D}(G) \leqq \mathfrak{b}(G)$, let $\mathfrak{B}(0)=\left\{V_{r}(0) \mid \gamma \in \Gamma\right\}$ be a family of open neighborhoods $V_{r}(0)$ of the zero element 0 of G which defines the topology of G at 0 . For each $\gamma \in I$, take a covering $G \subseteq \cup_{1=1}^{n_{r}} O_{r, i}$ of G by a finite number of translations $O_{r, i}=a_{r, i}+V_{r}(0)$ of $V_{r}(0)$. Then we claim that $\mathcal{D}=\left\{O_{r, i} \mid i=1, \ldots, n_{r} ; r \in \Gamma\right\}$ is a family of open subsets of G which defines the topology of G.

In fact, for any $a \in G$ and for any open set $O(a)$ containing a, let $\beta \in \Gamma$ be such that $a+V_{\beta}(0) \leqq O(a)$. Then take a $\gamma \in \Gamma$ such that $V_{\gamma}(0)-$ $V_{r}(0) \leqq V_{\beta}(0)$ and also a translation $O_{r, i}=a_{r, i}+V_{\gamma}(0)$ of $V_{\gamma}(0)$ which contains a. Then we see $a \in a_{r, i}+V_{r}(0)=a+V_{r}(0)-\left(a-a_{r, i}\right) \leqq a+$ $V_{r}(0)-V_{\tau}(0) \leqq a_{0}+V_{\beta}(0) \leqq O(a)$. Thus $\mathcal{D}=\left\{O_{r, i} \mid i=1, \ldots, n_{\tau} ; r \in \Gamma\right\}$ defines the topology of G. From this follows immediately that $o(G)$ $\leqq p(\mathfrak{D})=p(\Gamma)=\mathfrak{m}$. This completes the proof of Theorem 2.
§ 4. Proof of Theorem 3. Let G be a compact abelian group with $p(G)=2^{m}$, or what amounts to the same thing by Theorem 1 , with $\mathfrak{p}\left(G^{*}\right)=\mathfrak{m}$, where we denote as usual by G^{*} the discrete character group of G.

Let D be a subset of G which is dense in G with $p(D)=\mathfrak{n}$. We shall show that $\mathfrak{m} \leqq 2^{n}$. In order to show this, let H be a subgroup of G which is generated by D. Since D is obviously an infinite set, so we see $\mathfrak{p}(D)=\mathfrak{p}(H)=\mathfrak{n}$. Let us now consider H as a discrete group, and let H^{*} be the compact character group of H. Then every continuous character $\chi(a)=\left(a, a^{*}\right)$ on G may be considered as an algebraic character on H, and so there exists an algebraic homomorphism $a^{* \prime}=$ $\varphi^{*}\left(a^{*}\right)$ of G^{*} onto an algebraic subgroup $G^{* \prime}$ of $H^{* 7}$. This homomorphism is even an isomorphism since H is dense in G. Thus G^{*} is algebraically isomorphic with an algebraic subgroup $G^{* \prime}$ of H^{*} and hence $n t=p\left(G^{*}\right)=p\left(G^{* \prime}\right) \leqq p\left(H^{*}\right)=2^{n}$ by Theorem 1. This completes the first half of the proof of Theorem $3^{8)}$.

Let now n be a cardinal number satisfying $\mathfrak{m} \leqq 2^{\prime \prime}$. We shall show that there exists a subset D of G with $p(D) \leqq \mathfrak{r}$ which is dense in G. For this purpose it suffices to prove the following

Theorem 4. Let G^{*} be a discrete abelian group with $\mathfrak{p}\left(G^{*}\right)=\mathfrak{m}$, and let \mathfrak{n} be a cardinal number which satisfies $\mathfrak{m} \leqq 2^{\prime \prime}$. Then there exists a family $D=\left\{\chi\left(a^{*}\right)\right\}$ of algebraic characters on \bar{G}^{*} with $\mathfrak{p}(D) \leqq \mathfrak{n}$ which separates every element $a^{*} \in G^{*}$ with $a^{*} \neq 0^{*}$ from 0^{*} (i.e. such that, för any $a^{*} \in G^{*}$ with $a^{*} \neq 0^{*}$, there exists a character $\chi \in D$ with $\left.\chi\left(a^{*}\right) \neq 0\right)$.

In fact, if there exists such a family D, then D may be considered as a subset of the compact character group $G=G^{* *}$ of G^{*}. The algebraic subgroup H of G which is generated by D is dense in G; for, otherwise, there would exist an element $a^{*} \in G^{*}$ such that (a, a^{*}) $=0$ for any $a \in H$, or equivalently $\chi\left(a^{*}\right)=0$ for any $\chi \in D$, in contradiction with the separating property of $D=\left\{\chi\left(a^{*}\right)\right\}$ stated above.

So it only remains to prove Theorem 4.
Proof of Theorem 4. We shall divide our arguments into three cases :

[^1]1st case: G^{*} has no element of finite order. We shall first notice that there exists a subset $B^{*}=\left\{b_{r}^{*} \mid r \in \Gamma\right\}$ of G^{*} with $\mathfrak{p}\left(B^{*}\right)=\mathfrak{p}(\Gamma)=$ $\mathrm{m}=p\left(G^{*}\right)$ consisting of mutually independent elements and such that every $a^{*} \in G^{*}$ with $a^{*} \neq 0^{*}$ satisfies a relation of the form:

$$
\begin{equation*}
m a^{*}=\sum_{p-1}^{k} n_{p} b_{r_{p}} \tag{12}
\end{equation*}
$$

where $\left\{r_{1}, \ldots, r_{k}\right\} \leqq \Gamma$ and $\left\{m, n_{1}, \ldots, n_{k}\right\}$ is a finite system of positive or negative integers.

In fact, it suffices to take as B^{*} any maximal subset of G^{*} consisting of mutually independent elements, whose existence is clear from Zorn's lemma. It is then clear that every $a^{*} \in G^{*}$ with $a^{*} \neq 0^{*}$ satisfies a relation of the form (12). Further, since G^{*} has no element of finite order, for any given finite systems $\left\{r_{1}, \ldots, r_{k}\right\} \subseteq \Gamma$ and $\left\{m, n_{1}, \ldots, n_{k}\right\}$, there exists at most one element $a^{*} \in G^{*}$ which satisfies (12). From this follows immediately that $p\left(G^{*}\right)=p\left(B^{*}\right)$ if we remember that $\mathfrak{m}>\kappa_{0}$ by assumption.

Let H^{*} be an algebraic subgroup of G^{*} generated by B^{*}. Then for any system $\left\{c_{r} \mid \gamma \in \Gamma\right\}$ of real numbers (mod.1), there exists a uniquely determined algebraic character $\chi\left(a^{*}\right)$ defined on H^{*} which satisfies $\chi\left(b_{r}^{*}\right)=c_{r}(\bmod .1)$ for any $r \in \Gamma$.

Let now $\mathfrak{D}=\left\{\Delta_{\sigma} \mid \sigma \in \Sigma\right\}$ be a family of diadic partitions Δ_{σ} of Γ : $\Gamma=\Gamma_{\sigma} \cup \Gamma_{\sigma}^{\prime}, \Gamma_{\sigma} \cap I_{\sigma}^{\prime}=\theta$, with $\mathfrak{p}(\Sigma) \leqq \mathfrak{n}$ satisfying the following condition) : for any finite system $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\} \leqq \Gamma$ with $\gamma_{i} \neq \gamma_{j}$, for $i \neq j$, there exists a $\sigma \in \sum$ such that $r_{1} \in \Gamma_{\sigma}$ and $\left\{r_{2}, \cdots, \gamma_{k}\right\} \leqq \Gamma_{\sigma}^{\prime}$. The existence of such a family \mathfrak{D} is an easy consequence of the fact that $\mathfrak{p}(\Gamma)=\mathfrak{m}$ and $\mathfrak{m} \leqq 2^{\prime \prime}$. In fact, it is easy to see that there exists a family $\mathfrak{D}_{0}=\left\{\Delta_{\tau}^{0} \mid \tau \in T\right\}$ of diadic partitions Δ_{τ}^{0} of $\Gamma: \Gamma=\Gamma_{\tau}^{0} \cup \Gamma_{\tau}^{0 \prime}$, $\Gamma_{\mathrm{t}}^{0} \cap \Gamma_{\mathrm{r}}^{0}=\theta$ with $\mathfrak{p}(T) \leqq \mathfrak{n}$ satisfying the condition that for any pair $\left\{\gamma_{1}, r_{2}\right\} \leqq \Gamma$ with $\gamma_{1} \neq \gamma_{2}$, there exists a $\tau \in T$ such that $r_{1} \in \Gamma_{\mathrm{r}}^{0}$ and $\gamma_{2} \in \Gamma_{\tau}^{\sigma}$. It is then clear that the family $\mathscr{D}=\left\{\Delta_{\sigma} \mid \sigma \in \sum\right\}$ of all diadic partitions Δ_{σ} of $\Gamma: \Gamma=\Gamma_{\sigma} \cup \Gamma_{\sigma}^{\prime}$ where $\Gamma_{\sigma}=\Gamma_{\tau_{1}}^{0} \cap \cdots \cap \Gamma_{\tau_{n_{1}}}^{0}, \Gamma_{\sigma}^{\prime}=\Gamma_{\tau_{1}}^{\alpha} \cup \cdots$ $\cup \Gamma_{\tau_{n}}^{0}, \sum=\left\{\sigma=\left\{\tau_{1}, \ldots, \tau_{n}\right\} \mid\left\{\tau_{1}, \ldots, \tau_{n}\right\} \leqq T ; n=1,2, \ldots\right\}$ is a required one.

Now, for any $\sigma \in \sum$, let us define a character $\chi_{o}\left(a^{*}\right)$ on H^{*} by giving the values $\left\{\chi_{\sigma}\left(b_{r}^{*}\right) \mid \gamma \in \Gamma\right\}$ as follows: $\chi_{\theta}\left(b_{r}^{*}\right)=\lambda_{0}$ if $\gamma \in \Gamma_{\sigma}$ an? $\chi_{\sigma}\left(b_{r}^{*}\right)=0$ if $\gamma \in \Gamma_{\sigma}^{\prime}$, where λ_{0} is a fixed irrational number independent of σ and γ. This character $\chi_{\sigma}\left(a^{*}\right)$ can then be extended to a character $\bar{\chi}_{a}\left(a^{*}\right)$ on G^{*}. The extension is not unique unless $H^{*}=G^{*}$; so take any of the possible extensions. We claim that $D=\left\{\bar{\chi}_{o}\left(a^{*}\right) \mid \sigma \in \Sigma\right\}$ is a required family, i.e. that for any $a^{*} \in G^{*}$ with $a^{*} \neq 0^{*}$, there exists a $\sigma \in \sum$ such that $\bar{\chi}_{\sigma}\left(a^{*}\right) \neq 0$. In fact, every $a^{*} \in G^{*}$ with $a^{*} \neq 0^{*}$ satisfies a relation of the form (12). Let $\sigma \in \sum$ be such that $\gamma_{1} \in \Gamma_{\sigma}$ and $\left\{\gamma_{2}, \ldots, \gamma_{k}\right\} \leqq \Gamma_{\sigma}^{\prime}$. Then $\bar{\chi}_{o}\left(m a^{*}\right)=\chi_{o}\left(m c^{*}\right)=\chi_{\sigma}\left(\sum_{p=1}^{k} n_{p} b_{r p}^{*}\right)=n_{1} \lambda_{0} \equiv 0$ (mod.1), and so $\bar{\chi}_{0}\left(a^{*}\right) \equiv \equiv(\bmod .1)$. This completes the proof of Theorem 4 in case G^{*} has no element of finite order.

[^2]2nd case: every element of G^{*} is of finite order. Let G_{n}^{*} be a subgroup of G^{*} consisting of all elements $a^{*} \in G^{*}$ which satisfy $n a^{*}$ $=0^{*} \quad$ We have clearly $G^{*}=\bigvee_{n-1}^{\infty} G_{n}^{*}$, and $p\left(G_{n}^{*}\right) \leqq 2^{n}, n=1,2, \ldots$. By a result of G. Köthe ${ }^{10)}$, each G_{n}^{*} is algebraically isomorphic with a restricted infinite direct sum of a family $\left\{C_{\gamma} \mid \gamma \in \Gamma_{n}\right\}$ of finite cyclic groups C_{r} whise degree d_{r} divides n :

$$
\begin{equation*}
G_{n}^{*}=\sum_{r e \Gamma_{n}} \oplus C_{r} \tag{13}
\end{equation*}
$$

Consider each C_{r} as a subgroup of G_{n}^{*}, and let b_{r}^{*} be a generating element of C_{r}. Then, (13) means that every element $a^{*} \in G_{n}^{*}$ with $a^{*} \neq 0^{*}$ may be expressed in the form:

$$
\begin{equation*}
a^{*}=\sum_{p-1}^{k} n_{p} b_{r_{p}}^{*} \tag{14}
\end{equation*}
$$

where $\left\{\gamma_{1}, \ldots, \gamma_{k}\right\} \subseteq \Gamma_{n}$ and $\left\{n_{1}, \ldots, n_{k}\right\}$ is a finite system of positive integers such that $0<n_{p}<d_{r_{p}}$ for $p=1, \ldots, k$. It is clear that $p\left(\Gamma_{n}\right) \leqq \mathfrak{m}$. Since the compact character group $\left(G_{n}^{*}\right)^{*}$ of G_{n}^{*} is topologically isomorphic with the unrestricted infinite direct sum of the same family $\left\{C_{\gamma} \mid \gamma \in \Gamma_{n}\right\}$ of cyclic groups:

$$
\begin{equation*}
\left(G_{n}^{*}\right)^{*}=\sum_{r e \Gamma_{n}} \oplus C_{r} \tag{15}
\end{equation*}
$$

so we see that for any system $\left\{c_{r} \mid r \in \Gamma_{n}\right\}$ of real numbers $c_{r}=n_{r}^{*} / d_{r}$ where n_{T}^{*} is an integer satisfying $0 \leqq n_{T}^{*}<d_{r}$, there exists a uniquely determined character $\chi\left(a^{*}\right)$ on G_{n}^{*} such that $\chi\left(b_{r}^{*}\right)=c_{r}=n_{r}^{*} / d_{r}$ for any $r \in \Gamma_{n}$, and so

$$
\begin{equation*}
\chi\left(a^{*}\right)=\sum_{p=1}^{k} \frac{n_{p} n_{r_{p}}^{*}}{d_{\tau_{p}}} \tag{16}
\end{equation*}
$$

if a^{*} is of the form (14).
Let us again take a family $\mathfrak{D}=\left\{\Delta_{\sigma} \mid \sigma \in \sum_{n}\right\}$ of diadic partitions Δ_{σ} of $\Gamma_{\infty}: \quad \Gamma_{n}=\Gamma_{\sigma} \cup \Gamma_{o}^{\prime}, \Gamma_{0} \cap \Gamma_{o}^{\prime}=\theta$, with $\mathfrak{p}\left(\sum_{n}\right)=\mathfrak{n}$ satisfying the same conditions as in above. Then, for each $\sigma \in \sum_{n}$, let us define a character $\chi_{0}\left(a^{*}\right)$ on G_{n}^{*} by giving the values $\left\{\chi_{0}\left(b_{r}^{*}\right) \mid r \in \Gamma_{n}\right\}$ as follows: $\chi_{0}\left(b_{r}^{*}\right)=$ $1 / d_{r}$ if $r \in \Gamma_{\cdot}$ and $\chi_{0}\left(b_{r}^{*}\right)=0$ if $\gamma \in \Gamma_{f}^{\prime}$. It is then easy to see that the family $D_{n}=\left\{\chi_{0}\left(a^{*}\right) \mid \sigma \in \sum_{m}\right\}$ of characters thus obtained has a required separating property for G_{n}^{*}. In fact, every $a^{*} \in G_{n}^{*}$ with $a^{*} \neq 0^{*}$ may be expressed in the form (14), and if we take a $\sigma \in \sum_{n}$ such that $\gamma_{1} \in \Gamma_{0}$ and $\left\{r_{2}, \ldots, r_{k}\right\} \subseteq \Gamma_{\sigma}^{\prime}$, then it is clear that $\chi_{\sigma}\left(a^{*}\right)=n_{1} / d_{r_{1}} \equiv 0$ (mod. 1).

Thus, for each n, we have obtained a family $D_{n}=\left\{\chi_{\rho}\left(a^{*}\right) \mid \sigma \in \sum_{n}\right\}$ of characters on G_{n}^{*} having a requireo separating property for G_{n}^{*}. Extend each $\chi_{0}\left(a^{*}\right) \in D_{n}$ to a character $\bar{\chi}_{0}\left(a^{*}\right)$ on G^{*}. This extension is not unique unless $G^{*}=G_{n}^{*}$; so take any of the possible extensions. If we denote by \bar{D}_{n} the family $\left\{\bar{\chi}_{\sigma}\left(a^{*}\right) \mid \sigma \in \sum_{n}\right\}$ of characters thus obtained by extension, then it is clear that $D=\bigvee_{n-1}^{\infty} \bar{D}_{n}$ is a required family for G^{*}. Thus Theorem 4 is proved in case every element of G^{*} is of finite order.

[^3]$3 r d$ case: case of a general discrete abelian group G^{*}. Let G_{0}^{*} be a subgroup of G^{*} consisting of all elements of G^{*} of finite order. Then the factor group $F^{*}=G^{*} / G_{0}^{*}$ has no element of finite order. It is clear that $p\left(G_{0}^{*}\right) \leqq p\left(G^{*}\right) \leqq 2^{n}$ and $p\left(F^{*}\right)=p\left(G^{*} / G_{0}^{*}\right) \leqq p\left(G^{*}\right) \leqq 2^{n}$. Hence, by the results obtained in the first and the second cases, there exist a family D_{0} of characters on G^{*} with $\mathfrak{p}\left(D_{0}\right) \leqq \mathfrak{n}$ which separates every $a^{*} \in G_{0}^{*}$ with $a^{*} \neq 0^{*}$ from 0^{*}, and a family D^{\prime} of characters on $F^{*}=G^{*} / G_{0}^{*}$ which separates every element $a^{* \prime} \in F^{*}$ with $a^{* \prime} \neq 0^{* \prime}$ from $0^{* \prime}$, where $0^{* \prime}$ is the zero element of F^{*}. Extend each character $\chi\left(a^{*}\right) \in D_{0}$ to a character $\chi\left(a^{*}\right)$ on G^{*} in any possible way, and let \bar{D}_{0} be the family of all characters thus extended. Further, consider every character $\chi^{\prime}\left(a^{* \prime}\right) \in D^{\prime}$ on $F^{*}=G^{*} / G_{0}^{*}$ as a character $\overline{\chi^{\prime}}\left(a^{*}\right)$ on G^{*} which vanishes identically on G_{0}^{*}, and let \bar{D}^{\prime} be the family of characters on G^{*} thus obtained. It is then easy to see that $D=\bar{D}_{0} \cup \bar{D}^{\prime}$ is a family of characters on G^{*} with a required separating property for G^{*}.

This completes the proof of Theorem 4 in a general case.
Incidentally, we have proved the following
Theorem 5. Let G^{*} be a discrete abelian group with $\mathfrak{p}\left(G^{*}\right)=\mathfrak{m}$, and let \mathfrak{n} be a cardinal number which satisfies $\mathfrak{m} \leqq 2^{\mathfrak{n}}$. Then there exists a compact abelian group H^{*} with $p\left(H^{*}\right) \leqq 2_{4}^{\text {n }}$ which contains an algebraic subgroup algebraically isomorphic with G^{*}
§ 5. Problems. It would be an interesting problem to investigate how far we can obtain analogous results for non-commutative compact groups. And how is the situation for locally compact groups? We may also ask the same questions for homogeneous topological spaces, where we mean under a homogeneous topological space a topological space Ω such that, for any pair of points $\{a, b\} \leqq \Omega$ there exists a homeomorphism of Ω onto itself which maps a onto b.

[^0]: 4) S. Kakutani, Über die Metrisation der topologischen Gruppen, Proc. 12 (1936), 82-84.
 5) H. Anzai and S. Kakutani, Bohr compactifications of a locally compact abelian group, to appear in Proc. 19 (1943).
 6) (a, a^{*}) denotes the value of a character $a^{*} \in G^{*}$ at a point $a \in G$, and also the value of a character $a \in G$ at a point $a^{*} \in G^{*}$.
[^1]: 7) H. Anzai and S. Kakutani, loc. cit. 5).
 8) We may obtain the same inequality $\mathfrak{m} \leqq 2^{\mathfrak{n}}$ directly by appealing to the fact that if a Hausdorff space Ω contains a dense subset D with $p(D)=n$, the cardinal number $\mathfrak{p}(\Omega)$ of the space Ω must satisfy $p(\Omega) \leqq 2^{2^{n}}$ (Cf. B. Pospisil, Annals of Math. 38 (1937)). But in order to obtain $m \leqq 2^{\mathrm{n}}$ from $2^{\mathrm{mt}} \leqq 2^{2^{\mathfrak{n}}}$ we need the generalized continuum hypothesis.
[^2]: 9) In case $k=1$, this condition only means that $\gamma_{1} \in \Gamma_{\sigma}$.
[^3]: 10) G. Köthe, Mathematische Annalen, 105 (1931), 15-39.
