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1. Throughout the present paper we use the following notation"

(1) O(A) the cardinal number of a set A.

Let G be a compact abelian group containing an infinite number
of elements, and let us put

(2) O(G)=the smallest cardinal number O(F) of a system .(0)=
{ Vr(0) l)" e/} of open neighborhoods Vr(0) of the zero element
0 of G which definesD the topology of G at 0,

(3) (G)=the mallest cardinal number O(F) of a system
{Or !)" e F} of open subsets Or of G which defines2) the topology
of G,

(4) b(G)=the smallest cardinal number l(D) of a subset D of G
which is everywhere dense in G.

The purpose of the present paper is to evaluate the cardinal
numbers O(G), o(G), o(G) and b(G) in terms of the cardinal number
m=p(G*) of the discrete character group G* of G. The main results
may be stated as follows"

Theorem 1. O(G)=2n’.
Theorem . v(G) o(G) m.
Theorem 3. b(G)=n, where n is the smallest cardinal number

which satisfies 2"=> m.
Theorem 1 is a generalization of the fact that a compact abelian

group containing an infinite number of elements has always a cardinal
number :> , and that there is no compact abelian group whose cardinal
number is exactly be0. Further, assuming the generalized continuum
hypothesis" 2=t/, it follows from Theorem 1 that there is no
compact abelian group whose cardinal number is exactly t if a is a
limit ordinal. Theorem 2 implies as a special case that a compact
abelian group G is separable3) (and hence metrisable) if and only if
the discrete character group G* of G is countable, and if and only if

1) A system ’2(a)--{ Vr(a)]r e r) of neighborhoods Vr(a) of a point a of a topo-
logical space defines the topology of ? at a if, for any neighborhood V(a) of a in
9, there exists a " e I-’ such that lr(a V(a).

2) A system --{Or]" e F) of open sulJsets Or of a topological space defines
the topology of if, for any a e and for any neighborhood V(a) of a in P., there
exists a e ir such that a e Or V(a).

3) A topological space 9 is separable (=satisfies the second countability axiom of
Hausdorff) if there exists a countable family )-{0,n--1,2 } of open sut-ets O,
of @ which defines the topology of .
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G satisfies the first countability axiom of Hausdorff at the zero element
0 of G). Fina||y, from Theorem 3 we see that there usua||y exists,
in a compact abe]Jan group G, a dense subset D of G whose cardinal
number (D) is smaller than the cardinal number (G*)of the discrete
character group G* of G, which as we already know by Theorem 2
is equal to o(G). For example, in a compact abelian group G with

(G)--2 (i.e. wth p(G*)--c because of Theorem I), there always

exists a countable subset D of G (or even a countable subgroup
of G) which is dense in G. This fact, however, is not surprising
since we already know that there exists a monothetic or a solenoidal
compact abelian group which is not separable. Theorem 3 only shows
that this is quite a natural phenomenon. If we again assume the
generalized continuum hypothesis, then u m if and only if m--t with
a limit ordinal a, and n--t if m=+i.

Theorem 1,2 and 3 are all clear if re=tC0. Hence, throughout
the rest of this paper we always assume that m

2. Proof of Theorem I. Let G be a compact abelian group
containing an infinite number of elements, and let G* be the discrete
character group of G. Since every a e G can be considered as a real-
valued (rood. l)functionv Z(a*)--(a,a*) defined on G*, and since for
any pcr {a, b} G with a q: b there exists an * e G* with (a,
(b, a*), so we see that p(G)<:: c=2.

In order to show that p(G)::> 2", let us observe how a character
Z(a*) on G* can be defined constructively by transfinite induction"
Let

(5) G*= {a* ]0 a < (m)},

be a well-ordering of all elements of G* such that ad =0" (=the zero
element of G*), where (m) is the smallest ordinal number which
corresponds to the cardinal number m. Let us divide G* into three
classes A, A* and A*" the first class A]* consists of a =0" and of
all a which is contained in a suboup H* of G* generated by
{aS 10 <=a}; the second class A consists of all a* such that
a,* H* and ma* e H* for some integer m 1; and finally the third
class A consists of all a* such that ma* H* for m= 1, 2, It is
then easy to see that A* and A together generate G*, and so
p(A,A)=m, since by assumption m t%. Let us now define a
character (a*) on G* constructively by transfinite induction" for each
a* e Ai*, the value (a) is uniquely determined by the values
<: a}; for each a* e A*, let m, be the smallest positive integer such

that ma eH* Then there are exactly m different possibilities to
define (a*), namely,

4) S. Kakutani, t?ber die Metrisation der topologischen Gruppen, Proc. 12 (1936),
82-84.

5) H. Anzai and S. Kakutani, Bohr compactifications of a locally compact abelian
group, to appear in Proc. 19 (1943).

6) (a,a*) denotes the value of a character a* eG* at a point aeG, and also the
value of a character aeG at a point a* e G*.
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(6)

if
(7)

Finally, for each a e A, the value Z(a.) can be chosen arbitrarily

(mod. 1). From these facts follows immediately that p(G) 2r(
=2", as we wanted to prove. This completes the proof of Theorem 1.

3. Proof of Theorem 2. Let G* be the discrete character group
of a compact abelian group G. It is easy to see that a defining
neighborhood system (0)= { Vr(0)t r e/} of the zero element 0 of
G is given by

(8) V(O)--,a ]1 (a, a;) < _1-, P= 1, ..., k}m

(9) F={r (a a*’m}l(a, a,}<G*" k,m--1,2, }
From this follows easily that (()<___ O(F)=O(G*)=m.

In order to show that v(G)_>_m, let (O)=(VT(O)[reF} be a
family of neighborhoods VT(0) of the zero element 0 of G which defines
the topology of G at 0 and such that O(F)=O(G). For each re F,
let Hr be a closed subgroup of G contained in Vr(0) such that the
factor group F=G/HT is a compact separable abelian roup. It is
then clear that the discrete character group F* of F is countable.
Let us consider F* as the family of all continuous characters on G
which vanish identically on Hr. F is then a subgroup of G*, and
we claim that

(10) G* Ur
In order to prove (10), let a2 be an arbitrary element of G* and

let us put
1(11) V0(0) a ]] (a, a)I<

Then Vo(0) is an open neighborhood of the zero element 0 of G. Let
now 7 e I’be such that VT(0) V0(0), and let Hr be a closed subgroup
of G contained in V(0) as defined above. Then a e// implies na eH,
hence (ha, a)i <: 1/4 (mod. 1) for n- 1, 2, and consequently (a, a)
=0. Thus the character Z(a)=(a, a) vanishes identically on H, and
so we must have a e Fr*. Since a is an arbitrary element of
this proves (10). From (10) follows immediately that m (G*) )(
=v(G).

We shall next show that ,(G) V(G). It is clear that o(G) U(G).
In order to prove that o(G) <= O(G), let (O)=(Vr(O)l’eF} be a
family of open neighborhoods V(0) of the zero element 0 o’f G which
defines the topology of G at 0. For each 7eI’, take a covering

G 0. of G by a finite number of translations Or.=a..-}-V.(O)
of Vr(0). Then we claim that ={O.li=l,...,nr; reF} is a
family of open subsets of G which defines the topology of G.
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In fact, for any a e G and for any open set O(a) containing a, let e iv
be such that a/ V(0) O(a). Then take a T e iv such that VT(0)--
VT(0) V(0) and also a translation OT.----aT.+ VT(O) of V(0) which
contains a. Then we see a e at.,+ Vr(O)--a+ Vr(O)-(a-ar.) a/
v(o)- v(o)

_
ao+ v(o) o(a). Thus = {O,., i=, ..., m

defines the topology of G. From this follows immediately that o(G)
p(D)=p(F)=m. This completes the proof of Theorem 2.

4. Proof of Theorem 3. Let G be a compact abelian group with
p(G)=2m, or what amounts to the same thing by Theorem 1, with
p(G*)--m, where we denote as usual by G* the discrete character group
of G.

Let D be a subset of G which is dense in G with p(D)=n. We
shall show that m 2n. In order to show this, let H be a subgroup
of G which is generated by D. Since D is obviously an infinite set,
so we see p(D)=p(H)=n. Let us now consider H as a discrete group,
and let H* be the compact character group of H. Then every con-
tinuous character I(a)=(a, a*) on G may be considered as an algebraic
character on H, and so there exists an algebraic homomorphism a*’--
*(a*) of G* onto an algebraic subgroup G*’ of H.7). This homo-
morphism is even an isomorphism since H is dense in G. Thus G*
is algebraically isomorphic with an algebraic subgroup G*’ of H* and
hence m=O(G*)=p(G*’)_O(H*)=2" by Theorem 1. This completes
the first half of the proof of Theorem 38).

Let now n be a cardinal numbe. satisfying m "21’. We shall
show that there exists a subset D of G with p(D) , which is dense
in G. For this purpose it suffices to prove the following

Theorem . Let G* be a discrete abelian group with p(G*)--m,
and let n be a cardinal number which satisfies m2. Then t]wre
exists a family D= {/(a*)} of algebraic characters on G* with p(D) n

whic separates every element a* e G* with a* =0" from 0* (i.e.
such tha, %" any a* e G* with a* 0", there exists a character e D
with Z(a*) 0).

In fact, if there exists such a family D, then D may be considered
as a subset of the compact character group G--G** of G*. The
algebraic subgroup H of G which is generated by D is dense in G;
for, otherwise, there would exist an element a* e G* such that (a, a*)
=0 for any aeH, or equivalently .(a*)=O for any ;eD, in contradic-
tion with the separating property of D={{a.*)} stated above.

So it only remains to prove Theorem 4.
Proof of Theorem 4. We shall divide our arguments into three

cases"

7) H. Anzai and S. Kakutani, loc. cit. 5).
8) We may obtain the same inequality m 2 directly by appealing to the fact

that if a Hausdorff space contains a dense subset D with p(D)---n, the cardinal

number p(.@) of the space must satisfy p() 22 (Cf. B. Pospisil, Annals of Math.

38 (1937)}. But in order to obtain m 2 from 2m 22 we need the generalized

continuum hypothesis.
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1st cas: G* tas no elmen of finite order. We shall first notice
that there exists a subset B* {b !r e F} of G* with p(B*)=p(F)=
m--p(G*) consisting of mutually independent elements and such that
every a* e G* with a* 0* satisfies a relation of the form"

(12) ma ’-Inbr
where {7", ..., r,} F and {m, n, ..., nu} is a finite system of positive
or negative integers.

In fact, it suffices to take as B* any maximal subset of G* con-
sisting of mutually independent elements, whose existence is clear from
Zorn’s lemma. It is then clear that every a* e G* with a* =t=0*
satisfies a relation of the form (12). Further, since G* has no element
of finite order, for any given finite systems {7",---,r} /’ and
{m, nx, n}, there exists at most one element a* e G* which satisfies
(12). From this follows immediately that p(G*)=p(B*) if we remember
that m > t% by assumption.

Let H* be an algebraic subgroup of G* generated by B*. Then
for any system {cr r e F} of real numbers (mod. 1), there exists a
uniquely determined algebraic character Z(a*) defined on H* which
satisfies "/(b)=cr (rood. 1) for any r eF.

Let now ={o ae]} be a family of diadic partitions , of F"
F=F, F’, F, I’ , with p(,) n satisfying the following con-
ditions)" for any finite system {r, .-., 7"} F with r = 7"#, for i j,
there exists a a e], such that reF, and {r.,..-,r} /’. The
existence of such a family is an easy consequence of the fact that
p(F)=m and m 2". In fact, it is easy to see that there exists a
family 0={lreT} of diadic partitions of F" F=/JF’,
/FCr= with p(T) n satisfying the condition that for any pair
{)% r} F with )’ = r, there exists a r e T such that re/ and
r.eF. It is then clear that the family ={,1 ae} of all diadic
partitions , of F" F=rJ F’ where F,=/,.-- r. /’ rJ...

J/, {a {, ..., r,,} {r,, ..., r,} T; n 1, 2,...} is a required

one.
Now, for any ae, let us define a character ,(a*) on H* by

giving the values {Z,(b)]7 e F} as follows" Z,(bT)=0 if 7" e Fo an.
"/o(bT)=O if re/’,’, where 2o is a fixed irrational number independent
of e and r. This character Z,(a*) can then be extended to a character
:,(a*) on G*. The extension is not unique unless H*--G*; so take
any of the possible extensions. We claim that D={Zo(a*)[ae,} is
a required family, i.e. that for any a* e G* with a* 0", there exists

a e : such that Z,(a*) = O. In fact, every a* e G* with a* -q= 0*
satisfies a relation of the form (12). Let e, be such that r e F
and {rz, r} F,. Then o(ma*)--Z,(ma).., .(,_nb) n,0 $ 0

(mod. 1), and so ,(a*)0 (rood. l). This completes the proof of
Theorem 4 in case G* has no element of finite order.

9) In case k=l, th condition only means that
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n az- every dzm o/ G* o/fintz ord. Let * be a
subgroup of G* consisting of all elements a* e* which satisfy *--0" We have clearly G*-- J-IG, and p(*) 2n, n--1,2, By
a result of G. Kthe% each G* is algebraically isomorphic with a
restricted infinite direct sum of a family (Cr[Te/) of finite cyclic
groups Cr whise degree d divides n"

C,

Consider each C as a subgroup of G*, and let b be a generating
element of Cr. Then, (13) means that every element a* e G.* with
a*:t: 0* may be expressed in the form"

where {r, ..., ;’} /’. and {, ..., } is a finite system of positive
integers such that O<%r for p=l,...,k, tt is clear that
(/’.) m. inee the compact character group (G.*)* of G is topo-
logically isomorphic with the unrestricted infinite direct sum of the
same family {C, I r.} of cyclic groups"

so we see that for any system {c, Ir F.} of real numbers
where is an integer satisfying 0 < r, there exists a uniquely
determined character Z(*) on G.* such that ;(b)=cr=/dr for any
r F,, and so

(16) (a’)=N.,

if a" is of the form (14).
Let us agn take a family {zt. ].} of diadie partitions

of F." F.=F.L F’, F, F’=#, with (].)=n satisfying the same
conditions as in above. Then, for each ]., let us define a character

on by  ivinz the values as fonows"
1/d if r F. and L(b)=0 if F;. It is then easy to see that the
family D. {Z,(a*) :_} of characters thus obtained has a required
separatinff property for G’. In fact, every a* G* with a* =l= 0" may
be expressed in the form (14), and if we take a . such that
rF and {r, .--, }--___ FL then it is dear that .(a*)=.#d,,
(mod. 1).

Thus, for each ,t, we have obtained a family
of characters on G: having a requireo separating property for G.*.
Extend each ;L(a’)D. to a character L(a*) on G’. This extension
is not uninue unless G* =G*; so take any of the Iible extensions.

If we denote by . the family (L(a*)l_} of characters thus
obtained by extension, then it is elear that D= U:-/) is a required
family for G*. Thus Theorem g is proved in ease every element of
G* is of finite order.

10) G. Kthe, Mathematische Annalen, IO5 (1931), 15-39.
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3rd case" case of a general discrete abdian group G*. Let G
be a subgroup of G* consisting of all elements of G* of finite order.
Then the factor group F*=G*/G has no element of finite order. It
is clear that P(G) p(G*) <: 2’ and p(F*)=:p(G*/G) <: p(G*) 2.
Hence, by the results obtained in the first and the second cases, there
exist a family Do of characters on G* with P(D0)_ n which separates
every a* eG with a* :#0" from 0", and a family D’ of characters
on F*:G*/G which separates every element a*’ eF* with a*’:# 0"
from 0", where 0" is the zero element of F*. Extend each character
Z(a*)eDo to a character (a*)on G* in any possible way, and let
Do be the family of all characters thus extended. Further, consider
every character Z’(a*’)e/T on F*=G*/’G as a character Z’(a*) on G*
which vanishes identically on G, and let )’ be the family of charactem
on G* thus obtained. It is then easy to see that D--DoJ D’ is a
family of characters on G with a required separating property for G*.

This completes the proof of Theorem 4 in a general case.
Incidentally, we have proved the following
Theorem 5. Let G* be a discrete abdian group with (G*)=m,

and let n be a cardinal number which sat m 2n. Then there
exists a compact abelian group H* with O(H*) 2, which contains an
algebraic subgroup algebraically isomorphic with G*

5. Problems. It would be an interesting problem to investigate
how far we can obtain analogous results for non-commutative compact
groups. And how is the situation for locally compt groups? We
may also ask the same questions for homogeneous topological spaces,
where we mean under a homogeneous topological space a topological
space 9 such that, for any pair of points {a, b} 9 there exists a
homeomorphism of 9 onto itself which maps a onto b.


