74. On Cardinal Numbers Related with a Compact Abelian Group.

By Shizuo KAKUTANI.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., July 12, 1943.)

\$1. Throughout the present paper we use the following notation:

(1) p(A) = the cardinal number of a set A.

Let G be a compact abelian group containing an infinite number of elements, and let us put

- (2) $\mathfrak{v}(G) = \text{the smallest cardinal number } \mathfrak{p}(\Gamma) \text{ of a system } \mathfrak{V}(0) = \{V_r(0) | r \in \Gamma\} \text{ of open neighborhoods } V_r(0) \text{ of the zero element } 0 \text{ of } G \text{ which defines}^{1} \text{ the topology of } G \text{ at } 0,$
- (3) $\mathfrak{o}(G) = \text{the smallest cardinal number } \mathfrak{p}(\Gamma) \text{ of a system } \mathfrak{D} = \{O_r | r \in \Gamma\} \text{ of open subsets } O_r \text{ of } G \text{ which defines}^{2} \text{ the topology of } G,$
- (4) b(G)=the smallest cardinal number b(D) of a subset D of G which is everywhere dense in G.

The purpose of the present paper is to evaluate the cardinal numbers $\mathfrak{p}(G)$, $\mathfrak{v}(G)$, $\mathfrak{o}(G)$ and $\mathfrak{d}(G)$ in terms of the cardinal number $\mathfrak{m} = \mathfrak{p}(G^*)$ of the discrete character group G^* of G. The main results may be stated as follows:

Theorem 1. $\mathfrak{p}(G)=2^{\mathfrak{m}}$.

Theorem 2. v(G) = v(G) = u.

Theorem 3. $\mathfrak{d}(G) = \mathfrak{n}$, where \mathfrak{n} is the smallest cardinal number which satisfies $2^{\mathfrak{n}} \geq \mathfrak{m}$.

Theorem 1 is a generalization of the fact that a compact abelian group containing an infinite number of elements has always a cardinal number $\geq c$, and that there is no compact abelian group whose cardinal number is exactly \aleph_0 . Further, assuming the generalized continuum hypothesis : $2^{\aleph_a} = \aleph_{a+1}$, it follows from Theorem 1 that there is no compact abelian group whose cardinal number is exactly \aleph_a if a is a limit ordinal. Theorem 2 implies as a special case that a compact abelian group G is separable³ (and hence metrisable) if and only if the discrete character group G^* of G is countable, and if and only if

¹⁾ A system $\mathfrak{V}(a) = \{V_r(a) \mid r \in \Gamma\}$ of neighborhoods $V_r(a)$ of a point a of a topological space \mathfrak{Q} defines the topology of \mathfrak{Q} at a if, for any neighborhood V(a) of a in \mathfrak{Q} , there exists a $r \in \Gamma$ such that $V_r(a) \leq V(a)$.

²⁾ A system $\mathfrak{D} = \{O_r \mid r \in \Gamma\}$ of open subsets O_r of a topological space \mathfrak{Q} defines the topology of \mathfrak{Q} if, for any $a \in \mathfrak{Q}$ and for any neighborhood V(a) of a in \mathfrak{Q} , there exists a $r \in \Gamma$ such that $a \in O_r \subseteq V(a)$.

³⁾ A topological space \mathcal{Q} is separable (=satisfies the second countability axiom of Hausdorff) if there exists a countable family $\mathfrak{D} = \{O_n | n=1, 2, ...\}$ of open subsets O_n of \mathcal{Q} which defines the topology of \mathcal{Q} .

G satisfies the first countability axiom of Hausdorff at the zero element 0 of G^{40} . Finally, from Theorem 3 we see that there usually exists, in a compact abelian group G, a dense subset D of G whose cardinal number $\mathfrak{p}(D)$ is smaller than the cardinal number $\mathfrak{p}(G^*)$ of the discrete character group G^* of G, which as we already know by Theorem 2 is equal to $\mathfrak{o}(G)$. For example, in a compact abelian group G with $\mathfrak{p}(G)=2^{\mathfrak{c}}$ (i.e. with $\mathfrak{p}(G^*)=\mathfrak{c}$ because of Theorem 1), there always exists a countable subset D of G (or even a countable subgroup H of G) which is dense in G. This fact, however, is not surprising since we already know⁵⁾ that there exists a monothetic or a solenoidal compact abelian group which is not separable. Theorem 3 only shows that this is quite a natural phenomenon. If we again assume the generalized continuum hypothesis, then $\mathfrak{n}=\mathfrak{m}$ if and only if $\mathfrak{m}=\aleph_a$ with a limit ordinal a, and $\mathfrak{n}=\aleph_a$ if $\mathfrak{m}=\aleph_{a+1}$.

Theorem 1, 2 and 3 are all clear if $m = \aleph_0$. Hence, throughout the rest of this paper we always assume that $m > \aleph_0$.

§2. Proof of Theorem 1. Let G be a compact abelian group containing an infinite number of elements, and let G^* be the discrete character group of G. Since every $a \in G$ can be considered as a real-valued (mod. 1) function⁶⁾ $\chi(a^*) = (a, a^*)$ defined on G^* , and since for any pcir $\{a, b\} \subseteq G$ with $a \neq b$ there exists an $a^* \in G^*$ with $(a, a^*) \neq (b, a^*)$, so we see that $\mathfrak{p}(G) \leq \mathfrak{c}^m = 2^m$.

In order to show that $p(G) \ge 2^m$, let us observe how a character $\chi(a^*)$ on G^* can be defined constructively by transfinite induction: Let

(5)
$$G^* = \{a_a^* \mid 0 \leq a < \omega(m)\},\$$

be a well-ordering of all elements of G^* such that $a_0^*=0^*$ (=the zero element of G^*), where $\omega(\mathbf{m})$ is the smallest ordinal number which corresponds to the cardinal number \mathbf{m} . Let us divide G^* into three classes A_1^*, A_2^* and A_3^* : the first class A_1^* consists of $a_0^*=0^*$ and of all a_a^* which is contained in a subgroup H_a^* of G^* generated by $\{a_{\beta}^* \mid 0 \leq \beta < a\}$; the second class A_2^* consists of all a_a^* such that $a_a^* \in H_a^*$ and $ma_a^* \in H_a^*$ for some integer m > 1; and finally the third class A_3^* consists of all a_a^* such that $ma_a^* \in H_a^*$ for $m=1,2,\ldots$. It is then easy to see that A_2^* and A_3^* together generate G^* , and so $\mathfrak{p}(A_2^* \cup A_3^*) = \mathfrak{m}$, since by assumption $\mathfrak{m} > \aleph_0$. Let us now define a character $\chi(a^*)$ on G^* constructively by transfinite induction: for each $a_a^* \in A_1^*$, the value $\chi(a_a^*)$ is uniquely determined by the values $\{\chi(a_{\beta}) \mid \beta < a\}$; for each $a_a^* \in A_2^*$, let m_a be the smallest positive integer such that $m_a a_a^* \in H_a^*$. Then there are exactly m_a different possibilities to define $\chi(a_a^*)$, namely,

⁴⁾ S. Kakutani, Über die Metrisation der topologischen Gruppen, Proc. 12 (1936), 82-84.

⁵⁾ H. Anzai and S. Kakutani, Bohr compactifications of a locally compact abelian group, to appear in Proc. 19 (1943).

⁶⁾ (a, a^*) denotes the value of a character $a^* \in G^*$ at a point $a \in G$, and also the value of a character $a \in G$ at a point $a^* \in G^*$.

S. KAKUTANI.

(6)
$$\chi(a_a^*) = \frac{1}{m_a} \sum_{p=1}^k n_p a_{\beta_p}^* + \frac{j}{m_a}$$
 (mod. 1), $j = 0, 1, ..., m_a - 1$

if

(7)
$$m_a a_a^* = \sum_{p \to 1}^k n_p a_{\beta_p}^* \in H_a^* , \qquad 0 < \beta_1 < \cdots < \beta_n < a .$$

Finally, for each $a_a^* \in A_3^*$, the value $\chi(a_a^*)$ can be chosen arbitrarily (mod. 1). From these facts follows immediately that $\mathfrak{p}(G) \geq 2^{\mathfrak{p}(A_2^* \sim A_3^*)} = 2^{\mathfrak{m}}$, as we wanted to prove. This completes the proof of Theorem 1.

=2^m, as we wanted to prove. This completes the proof of Theorem 1. § 3. Proof of Theorem 2. Let G^* be the discrete character group of a compact abelian group G. It is easy to see that a defining neighborhood system $\mathfrak{B}(0) = \{V_r(0) | r \in \Gamma\}$ of the zero element 0 of G is given by

(8)
$$V_{\gamma}(0) = \left\{ a \mid |(a, a_{p}^{*})| < \frac{1}{m}, \ p = 1, ..., k \right\}$$

(9)
$$\Gamma = \left\{ \gamma = \{a_{1}^{*}, ..., a_{k}^{*}; m\} \mid \{a_{1}^{*}, ..., a_{k}^{*}\} \leq G^{*}; k, m = 1, 2, ... \right\}$$

From this follows easily that $\mathfrak{v}(G) \leq \mathfrak{p}(\Gamma) = \mathfrak{p}(G^*) = \mathfrak{m}$.

In order to show that $\mathfrak{v}(G) \geq \mathfrak{m}$, let $\mathfrak{V}(0) = \{V_r(0) \mid r \in \Gamma\}$ be a family of neighborhoods $V_r(0)$ of the zero element 0 of G which defines the topology of G at 0 and such that $\mathfrak{p}(\Gamma) = \mathfrak{v}(G)$. For each $\gamma \in \Gamma$, let H_r be a closed subgroup of G contained in $V_r(0)$ such that the factor group $F_r = G/H_r$ is a compact separable abelian group. It is then clear that the discrete character group F_r^* of F_r is countable. Let us consider F_r^* as the family of all continuous characters on G which vanish identically on H_r . F_r^* is then a subgroup of G^* , and we claim that

$$(10) G^* = \bigcup_{\tau \in \Gamma} F_{\tau} .$$

In order to prove (10), let a_0^* be an arbitrary element of G^* and let us put

(11)
$$V_0(0) = \left\{ a \mid |(a, a_0^*)| < \frac{1}{4} \right\}$$

Then $V_0(0)$ is an open neighborhood of the zero element 0 of G. Let now $\gamma \in I'$ be such that $V_r(0) \subseteq V_0(0)$, and let H_r be a closed subgroup of G contained in $V_r(0)$ as defined above. Then $a \in H_r$ implies $na \in H_r$, hence $|(na, a_0^*)| < 1/4$ (mod. 1) for n=1, 2, ... and consequently (a, a_0^*) = 0. Thus the character $\chi(a) = (a, a_0^*)$ vanishes identically on H_r , and so we must have $a_0^* \in F_r^*$. Since a_0^* is an arbitrary element of G^* , this proves (10). From (10) follows immediately that $\mathfrak{m} = \mathfrak{p}(G^*) \leq \mathfrak{p}(I) = \mathfrak{v}(G)$.

We shall next show that o(G) = v(G). It is clear that $o(G) \ge v(G)$. In order to prove that $o(G) \le v(G)$, let $\mathfrak{V}(0) = \{V_r(0) \mid r \in \Gamma\}$ be a family of open neighborhoods $V_r(0)$ of the zero element 0 of G which defines the topology of G at 0. For each $r \in I$; take a covering $G \le \bigcup_{i=1}^{n_r} O_{r,i}$ of G by a finite number of translations $O_{r,i} = a_{r,i} + V_r(0)$ of $V_r(0)$. Then we claim that $\mathfrak{D} = \{O_{r,i} \mid i=1, ..., n_r; r \in \Gamma\}$ is a family of open subsets of G which defines the topology of G.

368

In fact, for any $a \in G$ and for any open set O(a) containing a, let $\beta \in \Gamma$ be such that $a + V_{\beta}(0) \leq O(a)$. Then take a $\gamma \in \Gamma$ such that $V_{\gamma}(0) - V_{\gamma}(0) \leq V_{\beta}(0)$ and also a translation $O_{\gamma,i} = a_{\gamma,i} + V_{\gamma}(0)$ of $V_{\gamma}(0)$ which contains a. Then we see $a \in a_{\gamma,i} + V_{\gamma}(0) = a + V_{\gamma}(0) - (a - a_{\gamma,i}) \leq a + V_{\gamma}(0) - V_{\gamma}(0) \leq a_0 + V_{\beta}(0) \leq O(a)$. Thus $\mathfrak{D} = \{O_{\gamma,i} \mid i = 1, ..., n_{\gamma}; \gamma \in \Gamma\}$ defines the topology of G. From this follows immediately that $\mathfrak{o}(G) \leq \mathfrak{p}(\mathfrak{D}) = \mathfrak{p}(\Gamma) = \mathfrak{m}$. This completes the proof of Theorem 2.

§4. Proof of Theorem 3. Let G be a compact abelian group with $p(G)=2^{\mathfrak{m}}$, or what amounts to the same thing by Theorem 1, with $p(G^*)=\mathfrak{m}$, where we denote as usual by G^* the discrete character group of G.

Let D be a subset of G which is dense in G with $\mathfrak{p}(D)=\mathfrak{n}$. We shall show that $\mathfrak{m} \leq 2^{\mathfrak{n}}$. In order to show this, let H be a subgroup of G which is generated by D. Since D is obviously an infinite set, so we see $\mathfrak{p}(D)=\mathfrak{p}(H)=\mathfrak{n}$. Let us now consider H as a discrete group, and let H^* be the compact character group of H. Then every continuous character $\chi(a)=(a,a^*)$ on G may be considered as an algebraic character on H, and so there exists an algebraic homomorphism $a^{*'}=\varphi^*(a^*)$ of G^* onto an algebraic subgroup $G^{*'}$ of $H^{*\,\mathfrak{D}}$. This homomorphism is even an isomorphism since H is dense in G. Thus G^* is algebraically isomorphic with an algebraic subgroup $G^{*'}$ of H^* and hence $\mathfrak{n}=\mathfrak{p}(G^*)=\mathfrak{p}(G^{*'})\leq\mathfrak{p}(H^*)=2^{\mathfrak{n}}$ by Theorem 1. This completes the first half of the proof of Theorem $3^{\mathfrak{S}}$.

Let now n be a cardinal number satisfying $\mathfrak{m} \leq 2^{\mathfrak{n}}$. We shall show that there exists a subset D of G with $\mathfrak{p}(D) \leq \mathfrak{n}$ which is dense in G. For this purpose it suffices to prove the following

Theorem 4. Let G^* be a discrete abelian group with $\mathfrak{p}(G^*) = \mathfrak{m}$, and let \mathfrak{n} be a cardinal number which satisfies $\mathfrak{m} \leq 2^{\mathfrak{n}}$. Then there exists a family $D = \{\chi(a^*)\}$ of algebraic characters on G^* with $\mathfrak{p}(D) \leq \mathfrak{n}$ which separates every element $a^* \in G^*$ with $a^* \pm 0^*$ from 0^* (i.e. such that, for any $a^* \in G^*$ with $a^* \pm 0^*$, there exists a character $\chi \in D$ with $\chi(a^*) \neq 0$).

In fact, if there exists such a family D, then D may be considered as a subset of the compact character group $G=G^{**}$ of G^* . The algebraic subgroup H of G which is generated by D is dense in G; for, otherwise, there would exist an element $a^* \in G^*$ such that (a, a^*) =0 for any $a \in H$, or equivalently $\chi(a^*)=0$ for any $\chi \in D$, in contradiction with the separating property of $D=\{\chi(a^*)\}$ stated above.

So it only remains to prove Theorem 4.

Proof of Theorem 4. We shall divide our arguments into three cases :

⁷⁾ H. Anzai and S. Kakutani, loc. cit. 5).

⁸⁾ We may obtain the same inequality $m \leq 2^n$ directly by appealing to the fact that if a Hausdorff space \mathcal{Q} contains a dense subset D with $\mathfrak{p}(D)=\mathfrak{n}$, the cardinal number $\mathfrak{p}(\mathcal{Q})$ of the space \mathcal{Q} must satisfy $\mathfrak{p}(\mathcal{Q}) \leq 2^{2^n}$ (Cf. B. Pospisil, Annals of Math. **38** (1937)). But in order to obtain $\mathfrak{m} \leq 2^n$ from $2^m \leq 2^{2^n}$ we need the generalized continuum hypothesis.

1st case: G^* has no element of finite order. We shall first notice that there exists a subset $B^* = \{b_r^* \mid r \in \Gamma\}$ of G^* with $\mathfrak{p}(B^*) = \mathfrak{p}(\Gamma) =$ $\mathfrak{m} = \mathfrak{p}(G^*)$ consisting of mutually independent elements and such that every $a^* \in G^*$ with $a^* \neq 0^*$ satisfies a relation of the form:

$$ma^* = \sum_{p=1}^k n_p b_{r_p},$$

where $\{\gamma_1, ..., \gamma_k\} \subseteq \Gamma$ and $\{m, n_1, ..., n_k\}$ is a finite system of positive or negative integers.

In fact, it suffices to take as B^* any maximal subset of G^* consisting of mutually independent elements, whose existence is clear from Zorn's lemma. It is then clear that every $a^* \in G^*$ with $a^* \neq 0^*$ satisfies a relation of the form (12). Further, since G^* has no element of finite order, for any given finite systems $\{\gamma_1, ..., \gamma_k\} \subseteq \Gamma$ and $\{m, n_1, ..., n_k\}$, there exists at most one element $a^* \in G^*$ which satisfies (12). From this follows immediately that $\mathfrak{p}(G^*) = \mathfrak{p}(B^*)$ if we remember that $\mathfrak{m} > \aleph_0$ by assumption.

Let H^* be an algebraic subgroup of G^* generated by B^* . Then for any system $\{c_r \mid r \in \Gamma\}$ of real numbers (mod. 1), there exists a uniquely determined algebraic character $\chi(a^*)$ defined on H^* which satisfies $\chi(b_r^*) = c_r \pmod{1}$ for any $r \in \Gamma$.

Let now $\mathfrak{D} = \{d_e \mid \sigma \in \Sigma\}$ be a family of diadic partitions \mathcal{A}_e of Γ : $\Gamma = \Gamma_e \cup \Gamma'_a$, $\Gamma_\sigma \cap \Gamma'_q = \theta$, with $\mathfrak{p}(\Sigma) \leq \mathfrak{n}$ satisfying the following condition⁹: for any finite system $\{\gamma_1, \ldots, \gamma_k\} \subseteq \Gamma$ with $\gamma_i \neq \gamma_j$, for $i \neq j$, there exists a $\sigma \in \Sigma$ such that $\gamma_1 \in \Gamma_\sigma$ and $\{\gamma_2, \ldots, \gamma_k\} \subseteq \Gamma'_\sigma$. The existence of such a family \mathfrak{D} is an easy consequence of the fact that $\mathfrak{p}(\Gamma) = \mathfrak{m}$ and $\mathfrak{m} \leq 2^{\mathfrak{n}}$. In fact, it is easy to see that there exists a family $\mathfrak{D}_0 = \{\mathcal{A}^0_r \mid \tau \in T\}$ of diadic partitions \mathcal{A}^0_r of Γ : $\Gamma = \Gamma^0_r \cup \Gamma^0_r$, $\Gamma^0_r \cap \Gamma^0_r = \theta$ with $\mathfrak{p}(T) \leq \mathfrak{n}$ satisfying the condition that for any pair $\{\gamma_1, \gamma_2\} \leq \Gamma$ with $\gamma_1 = \gamma_2$, there exists a $\tau \in T$ such that $\gamma_1 \in \Gamma^0_r$ and $\gamma_2 \in \Gamma^0_r$. It is then clear that the family $\mathfrak{D} = \{\mathcal{A}_e \mid \sigma \in \Sigma\}$ of all diadic partitions \mathcal{A}_σ of Γ : $\Gamma = \Gamma_r \cup \Gamma'_\sigma$ where $\Gamma_\sigma = \Gamma^0_{r_1} \cap \cdots \cap \Gamma^0_{r_n}$, $\Gamma'_\sigma = \Gamma^0_{r_1} \cup \cdots$ $\cup \Gamma^0_{r_n}$, $\Sigma = \{\sigma = \{\tau_1, \ldots, \tau_n\} \mid \{\tau_1, \ldots, \tau_n\} \leq T; n = 1, 2, \ldots\}$ is a required one.

Now, for any $\sigma \in \Sigma$, let us define a character $\chi_{\sigma}(a^*)$ on H^* by giving the values $\{\chi_{\sigma}(b_{\tau}^*) | \tau \in \Gamma\}$ as follows: $\chi_{\sigma}(b_{\tau}^*) = \lambda_0$ if $\tau \in \Gamma_{\sigma}$ and $\chi_{\sigma}(b_{\tau}^*) = 0$ if $\tau \in \Gamma'_{\sigma}$, where λ_0 is a fixed irrational number independent of σ and τ . This character $\chi_{\sigma}(a^*)$ can then be extended to a character $\bar{\chi}_{\sigma}(a^*)$ on G^* . The extension is not unique unless $H^* = G^*$; so take any of the possible extensions. We claim that $D = \{\bar{\chi}_{\sigma}(a^*) | \sigma \in \Sigma\}$ is a required family, i.e. that for any $a^* \in G^*$ with $a^* \pm 0^*$, there exists a $\sigma \in \Sigma$ such that $\bar{\chi}_{\sigma}(a^*) \pm 0$. In fact, every $a^* \in G^*$ with $a^* \pm 0^*$ satisfies a relation of the form (12). Let $\sigma \in \Sigma$ be such that $\tau_1 \in \Gamma_{\sigma}$ and $\{\tau_2, \ldots, \tau_k\} \subseteq \Gamma'_{\sigma}$. Then $\bar{\chi}_{\sigma}(ma^*) = \chi_{\sigma}(ma^*) = \chi_{\sigma}(\sum_{p=1}^k n_p b_{\tau_p}^*) = n_1 \lambda_0 \equiv 0$ (mod. 1), and so $\bar{\chi}_{\sigma}(a^*) \equiv 0$ (mod. 1). This completes the proof of Theorem 4 in case G^* has no element of finite order.

⁹⁾ In case k=1, this condition only means that $\tau_1 \in \Gamma_{\sigma}$.

2nd case: every element of G^* is of finite order. Let G_n^* be a subgroup of G^* consisting of all elements $a^* \in G^*$ which satisfy $na^* = 0^*$ We have clearly $G^* = \bigvee_{n=1}^{\infty} G_n^*$, and $\mathfrak{p}(G_n^*) \leq 2^n$, $n=1,2,\ldots$ By a result of G. Köthe¹⁰⁾, each G_n^* is algebraically isomorphic with a restricted infinite direct sum of a family $\{C_r | r \in \Gamma_n\}$ of finite cyclic groups C_r whise degree d_r divides n:

(13)
$$G_n^* = \sum_{\tau \in \Gamma_n} \oplus C_{\tau}.$$

Consider each C_r as a subgroup of G_n^* , and let b_r^* be a generating element of C_r . Then, (13) means that every element $a^* \in G_n^*$ with $a^* \neq 0^*$ may be expressed in the form:

where $\{\gamma_1, ..., \gamma_k\} \subseteq \Gamma_n$ and $\{n_1, ..., n_k\}$ is a finite system of positive integers such that $0 < n_p < d_{r_p}$ for p=1, ..., k. It is clear that $\mathfrak{p}(\Gamma_n) \leq \mathfrak{m}$. Since the compact character group $(G_n^*)^*$ of G_n^* is topologically isomorphic with the unrestricted infinite direct sum of the same family $\{C_r \mid r \in \Gamma_n\}$ of cyclic groups:

(15)
$$(G_n^*)^* = \sum_{r \in \Gamma_n} \bigoplus C_r ,$$

so we see that for any system $\{c_r \mid r \in \Gamma_n\}$ of real numbers $c_r = n_r^*/d_r$ where n_r^* is an integer satisfying $0 \leq n_r^* < d_r$, there exists a uniquely determined character $\chi(a^*)$ on G_n^* such that $\chi(b_r^*) = c_r = n_r^*/d_r$ for any $r \in \Gamma_n$, and so

(16)
$$\chi(a^*) = \sum_{p=1}^k \frac{n_p n_{\tau_p}^*}{d_{\tau_p}}$$

if a^* is of the form (14).

Let us again take a family $\mathfrak{D} = \{ \mathcal{L}_{\sigma} \mid \sigma \in \sum_{n} \}$ of diadic partitions \mathcal{L}_{σ} of $\Gamma_{\mathfrak{s}}: \Gamma_{n} = \Gamma_{\sigma} \cup \Gamma'_{\sigma}, \Gamma_{\sigma} \cap \Gamma'_{\sigma} = \theta$, with $\mathfrak{p}(\sum_{n}) = \mathfrak{n}$ satisfying the same conditions as in above. Then, for each $\sigma \in \sum_{n}$, let us define a character $\mathfrak{X}_{\sigma}(a^{*})$ on G_{n}^{*} by giving the values $\{\mathfrak{X}_{\sigma}(b_{T}^{*}) \mid \tau \in \Gamma_{n}\}$ as follows: $\mathfrak{X}_{\sigma}(b_{T}^{*}) =$ $1/d_{T}$ if $\tau \in \Gamma_{\sigma}$ and $\mathfrak{X}_{\sigma}(b_{T}^{*}) = 0$ if $\tau \in \Gamma'_{\sigma}$. It is then easy to see that the family $D_{n} = \{\mathfrak{X}_{\sigma}(a^{*}) \mid \sigma \in \sum_{n}\}$ of characters thus obtained has a required separating property for G_{n}^{*} . In fact, every $a^{*} \in G_{n}^{*}$ with $a^{*} \neq 0^{*}$ may be expressed in the form (14), and if we take a $\sigma \in \sum_{n}$ such that $\tau_{1} \in \Gamma_{0}$ and $\{\tau_{2}, ..., \tau_{k}\} \subseteq \Gamma'_{\sigma}$, then it is clear that $\mathfrak{X}_{\sigma}(a^{*}) = n_{1}/d_{\tau_{1}} \equiv 0$ (mod. 1).

Thus, for each n, we have obtained a family $D_n = \{\chi_{\sigma}(a^*) \mid \sigma \in \sum_n\}$ of characters on G_n^* having a required separating property for G_n^* . Extend each $\chi_{\sigma}(a^*) \in D_n$ to a character $\overline{\chi}_{\sigma}(a^*)$ on G^* . This extension is not unique unless $G^* = G_n^*$; so take any of the possible extensions. If we denote by \overline{D}_n the family $\{\overline{\chi}_{\sigma}(a^*) \mid \sigma \in \sum_n\}$ of characters thus obtained by extension, then it is clear that $D = \bigvee_{n=1}^{\infty} \overline{D}_n$ is a required family for G^* . Thus Theorem 4 is proved in case every element of G^* is of finite order.

¹⁰⁾ G. Köthe, Mathematische Annalen, 105 (1931), 15-39.

S. KAKUT

3rd case: case of a general discrete abelian group G^* . Let G_0^* be a subgroup of G^* consisting of all elements of G^* of finite order. Then the factor group $F^* = G^*/G_0^*$ has no element of finite order. It is clear that $\mathfrak{p}(G_0^*) \leq \mathfrak{p}(G^*) \leq 2^n$ and $\mathfrak{p}(F^*) = \mathfrak{p}(G^*/G_0^*) \leq \mathfrak{p}(G^*) \leq 2^n$. Hence, by the results obtained in the first and the second cases, there exist a family D_0 of characters on G^* with $\mathfrak{p}(D_0) \leq \mathfrak{n}$ which separates every $a^* \in G_0^*$ with $a^* \neq 0^*$ from 0^* , and a family D' of characters on $F^* = G^*/G_0^*$ which separates every element $a^{*'} \in F^*$ with $a^{*'} \neq 0^{*'}$ from $0^{*'}$, where $0^{*'}$ is the zero element of F^* . Extend each character $\chi(a^*) \in D_0$ to a character $\chi(a^*)$ on G^* in any possible way, and let \overline{D}_0 be the family of all characters thus extended. Further, consider every character $\chi'(a^{*'}) \in D'$ on $F^* = G^*/G_0^*$ as a character $\overline{\chi'}(a^*)$ on G^* which vanishes identically on G_0^* , and let \overline{D} be the family of characters on G^* thus obtained. It is then easy to see that $D = \overline{D}_0 \cup \overline{D'}$ is a family of characters on G^* with a required separating property for G^* .

This completes the proof of Theorem 4 in a general case.

Incidentally, we have proved the following

Theorem 5. Let G^* be a discrete abelian group with $\mathfrak{p}(G^*)=\mathfrak{m}$, and let \mathfrak{n} be a cardinal number which satisfies $\mathfrak{m} \leq 2^{\mathfrak{n}}$. Then there exists a compact abelian group H^* with $\mathfrak{p}(H^*) \leq 2^{\mathfrak{n}}$, which contains an algebraic subgroup algebraically isomorphic with G^*

§5. Problems. It would be an interesting problem to investigate how far we can obtain analogous results for non-commutative compact groups. And how is the situation for locally compact groups? We may also ask the same questions for homogeneous topological spaces, where we mean under a homogeneous topological space a topological space \mathcal{Q} such that, for any pair of points $\{a, b\} \subseteq \mathcal{Q}$ there exists a homeomorphism of \mathcal{Q} onto itself which maps a onto b.