93. On Analytic Functions in Abstract Spaces.

By Isae Shimoda.

Mathematical Institute, Osaka Imperial University. (Comm. by T. TAKAGI, M.I.A., Oct. 12, 1943.)

§ 1. The purpose of the present paper is to extend some of the theorems of H. Cartan¹⁾ on functions of several complex variables to the case of functions whose domain and range both lie in complex Banach spaces.^{*)}

Let E and E' be two complex Banach spaces, and let x'=f(x) be an E'-valued function defined on a certain neighborhood $V(x_0)$ of a point $x_0 \in E$. x'=f(x) is said to admit a variation or a Gateaux differential at $x=x_0$ if

(1)
$$\lim_{a\to 0} \frac{f(x_0+ay)-f(x_0)}{a}$$

exists strongly for any $y \in E$ (a is a complex number).

An E'-valued function x' = f(x) defined on a domain D of E is analytic in D if it is strongly continuous on D and if it admits a Gateaux differential at every point of D. It is clear that, in case both E and E' are the field of complex numbers, this definition coincides with the usual definition of a complex-valued analytic function of a single complex variable. Further, if E is the field of complex numbers while E' is an arbitrary complex Banach space, then our definition coincides with that of a Banach-space-valued analytic function of a single complex variable given by E. Hille and N. Dunford.²⁾

An E'-valued function x' = p(x) defined on E is a polynomial of degree n if the following conditions are satisfied: 1) p(x) is strongly continuous at each point of E, 2) for each x and y in E, and for any complex number a, p(x+ay) can be expressed as

(2)
$$p(x+\alpha y) = \sum_{k=1}^{n} a^{k} p_{k}(x, y),$$

where $p_k(x, y)$ are arbitrary E'-valued functions of two variables x and y, 3) $p_n(x, y) \neq 0$ for some x and y. If, in addition to these, $p(ax) = a^n p(x)$, then the function p(x) is called a *homogeneous polynomial of degree n*. It is clear that an E'-valued polynomial defined on E is analytic on E.

We shall state a theorem of A. E. Taylor³⁾ which we shall need in the following discussions :

Let E and E' be two complex Banach spaces. If an E'-valued

^{*)} I am deeply grateful to Professor Kakutani who has kindly given me a number of valuable suggestions.

¹⁾ H. Cartan, Sur les groupes des transformations analytiques, Actualités, Paris, 1938.

²⁾ Cf. E. Hille, Semi-group of linear transformations, Annals of Math., 40 (1939).

³⁾ A.F. Taylor, On the properties of analytic functions in abstract spaces, Math. Annalen, 115 (1938).

No. 8.]

function x' = f(x) is defined and is analytic in the sphere $S_{\rho} = \{x \mid ||x|| < \rho\}$ of E, then it may be expanded into the series

(3)
$$f(x) = f(0) + \sum_{n=1}^{\infty} f_n(x)$$

where $f_n(x)$ is an E'-valued homogeneous polynomial of degree n given by

(4)
$$f_n(x) = \frac{1}{2\pi i} \int \frac{f(ax)}{a^{n+1}} da \, .$$

the integral being taken in the positive sense on the circle $|\alpha| = \rho' < 1$. The series on the right hand side of (3) converges absolutely and uniformly in the sphere $S_{\rho'} = \{x \mid ||x|| \leq \rho'\}$, where ρ' is a sufficiently small positive number.

§2. Theorem 1. Let E, E' and E'' be three complex Banach spaces and let D and D' be two domains in E and E' respectively. If x' = f(x) is an E'-valued analytic function defined on D whose value lies in D', and if x'' = g(x') is an E''-valued analytic function defined on D', then x'' = g(f(x)) is an E''-valued analytic function defined on D.

Proof. It is clear that x'' = g(f(x)) is strongly continuous on D. So it suffices to show that

(5)
$$\lim_{a\to 0} \frac{g(f(x_0+\alpha y))-g(f(x_0))}{\alpha}$$

exists for any $x_0 \in D$ and for any $y \in E$. Without loss of generality we may assume that $x_0=0$, f(0)=0' and g(0')=0'', where 0, 0' and 0'' denote the origin of E, E' and E'' respectively. Thus we have only to show that

(6)
$$\lim_{\alpha\to 0}\frac{g(f(\alpha y))}{\alpha}$$

exists for any $y \in E$, which we shall assume given and fixed.

Since x' = f(x) is analytic at x=0, so there exist two positive constants δ and M such that

(7)
$$f(ay) = af_1(y) + a^2 R(y, a)$$

with $||R(y, a)|| \leq M$ for any a with $|a| \leq \delta$. Further, since x'' = g(x') is analytic at x' = 0', so there exist two positive constants $\delta'(\leq \delta)$ and M' such that

(8)
$$g(az) = ag_1(z) + a^2 S(z, a)$$

with $||S(z, a)|| \leq M'$ for any z and a with $||z|| \leq ||f_1(y)|| + \delta M$ and $|a| \leq \delta'$. Consequently, $|a| \leq \delta'$ implies

(9)
$$g(f(ay)) = g(af_1(y) + a^2R(y, a))$$

= $ag_1(f_1(y) + aR(y, a)) + a^2S(f_1(y) + aR(y, a), a)$

Since $g_1(z)$ is strongly continuous, it follows from (9) that the limi (6) exists and is equal to $g_1(f_1(y))$ for any $y \in E$.

Exactly in the same way, we may prove the following

Theorem 2. In addition to the assumptions in Theorem 1, let us assume that $0 \in D$, $0' \in D'$, f(0)=0' and g(0')=0'', where 0, 0' and 0'' denote the origin of E, E' and E'' respectively. Let further

(10)
$$f(x) = \sum_{n=m}^{\infty} f_n(x),$$

(11) $g(x') = \sum_{n=p}^{\infty} g_n(x')$

be the Taylor expansions of x' = f(x) and x'' = g(x') at x = 0 and x' = 0'respectively which begin with the m-th term and the p-th term respectively. Then x'' = h(x) = g(f(x)) is an analytic function defined on D, and the Taylor expansion

(12)
$$h(x) = \sum_{n-mp}^{\infty} h_n(x)$$

of x'' = h(x) begins with the mp-th term $h_{mp}(x) = g_p(f_m(x))$.

§3. Theorem 3. Let E be a complex Banach space, and let x'=f(x) be an E-valued analytic function defined on the unit sphere $S = \{x \mid ||x|| < 1\}$ of E which maps S into itself. If the Taylor expansion of f(x) at x=0 is of the form:

(13)
$$f(x) = x + \sum_{n=2}^{\infty} f_n(x),$$

then x' = f(x) must be the identity mapping : $f(x) \equiv x$.

Proof. It suffices to show that $f_n(x) \equiv 0$ for $n=2, 3, \ldots$. Assume the contrary, and let $f_m(x)$ $(m \geq 2)$ be the first term which does not vanish identically. i. e. $f_n(x) \equiv 0$ for $n=2, \ldots, m-1$, and $f_m(x_0) \neq 0$ for some $x_0 \in S$.

Let us define a sequence $\{f^{(k)}(x) | k=1, 2, ...\}$ of *E*-valued functions $f^{(k)}(x)$ recurrently by

(14)
$$f^{(k)}(x) = f(f^{(k-1)}(x)), \quad k=2, 3, ...; \quad f^{(1)}(x) = f(x).$$

Then, from Theorem 1 follows that each $f^{(k)}(x)$ gives an analytic mapping of S into itself. Further, it is not difficult to see, by appealing to Theorem 2, that the Taylor expansion of $x' = f^{(k)}(x)$ at x=0 is of the form:

(15)
$$f^{(k)}(x) = x + k f_m(x) + \sum_{n=m+1}^{\infty} f_n^{(k)}(x)$$

In fact, (15) is clear for k=1, and the case for general k may be proved by mathematical induction.

The integration formula (4) then gives

(16)
$$k f_m(x) = \frac{1}{2\pi i} \int \frac{f^{(k)}(ax)}{a^{m+1}} da$$

the integral being taken in the positive sense on the circle $|\alpha| = \rho < 1$. From (16) follows immediately

(17)
$$k \|f_m(x_0)\| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\|f^{(k)}(\alpha x_0)\|}{\rho^{m+1}} \rho d\theta \leq \frac{1}{\rho^m}$$

for k=1, 2, ..., in contradiction to our assumption that $f_m(x_0) \neq 0$. This completes the proof of Theorem 3. §4. Let D and D' be two domains in two complex Banach spaces E and E' respectively. If x'=f(x) is a one-to-one mapping of D onto D' such that both x'=f(x) and its inverse $x=f^{-1}(x')$ are analytic functions in D and D' respectively, then x'=f(x) is called an *analytical mapping* of D onto D'.

Theorem 4. Let E and E' be two complex Banach spaces, and let x'=f(x) be an analytic mapping of the unit sphere $S = \{x \mid ||x|| < 1\}$ of E onto the unit sphere $S' = \{x' \mid ||x'|| < 1\}$ of E'. If the origin 0 of E is mapped to the origin 0' of E' by x'=f(x), then x'=f(x) is a linear and isometric mapping.

Proof. For any $\theta(0 \le \theta < 2\pi)$, let us consider an analytic mapping $x'=h_{\theta}(x)$ of S onto itself given by

(18)
$$h_{\theta}(x) = e^{-i\theta} f^{-1} \left(e^{i\theta} f(x) \right)$$

It is clear that

(19)
$$h_{\theta}(0) = 0, \quad h_{0}(x) \equiv x.$$

Further, let us consider the Taylor expansions of f(x), $g(x)=f^{-1}(x)$ and $h_{\theta}(x)$ at x=0:

(20)
$$f(x) = \sum_{n=1}^{\infty} f_n(x),$$

$$g(x) = \sum_{n=1}^{\infty} g_n(x) ,$$

$$h_{\theta}(x) = \sum_{n=1}^{\infty} h_{\theta,n}(x).$$

Then Theorem 2 implies

(23)
$$h_{\theta,1}(x) = e^{-i\theta} g_1(e^{i\theta} f_1(x)) = g_1(f_1(x)).$$

Hence $h_{\theta,1}(x)$ is independent of θ , and so by (19),

$$h_{\theta,1}(x) \equiv x.$$

Thus Theorem 3 is applicable, and we see that $h_{\theta}(x) \equiv x$, or equivalently that $f(e^{i\theta}x) \equiv e^{i\theta}f(x)$ for any $\theta(0 \leq 0 < 2\pi)$ and for any $x \in S$. From this follows immediately by (4) that $f_n(x) \equiv 0$ for $n \geq 2$. Thus we see $f(x) = f_1(x)$, and this shows that f(x) is linear.¹⁾ Further, since every $y \in S$ is mapped by x' = f(x) to an element $f(y) \in S'$, so we see that $\|f(x)\| = \|(\|x\| + \epsilon) f(x/(\|x\| + \epsilon))\| \leq \|x\| + \epsilon$ for any $\epsilon > 0$, from which follows that $\|f(x)\| \leq \|x\|$. Since the inverse inequality $\|x\| = \|f^{-1}(f(x))\| \leq \|f(x)\| = \|f(x)\| = \|x\|$. This completes the proof of Theorem 4.

1) It is easy to see that a homogeneous polynomial of degree 1 is linear. It only suffices to show that a homogeneous polynomial p(x) of degree 1 satisfies p(x+y) = p(x) + p(y). In fact, by definition, p(x) satisfies a relation $p(x+ay) = p_0(x, y) + ap_1(x, y)$, for any x, y and a. It is easy to see that $p_0(x, y) = p(x)$, and so $p_1(x, y) = \frac{1}{a}p(x+ay) - \frac{1}{a}p(x) = p\left(\frac{1}{a}x+y\right) - p\left(\frac{1}{a}x\right)$. If we now let $a \to \infty$, then the continuity of p(x) implies that $p_1(x, y) = p(y)$.

No. 8.]