93. On Analytic Functions in Abstract Spaces.

By Isae Shimoda.
Mathematical Institute, Osaka Imperial University.

(Comm. by T. Takagi, m.i.A., Oct. 12, 1943.)
§1. The purpose of the present paper is to extend some of the theorems of H . Cartan ${ }^{1)}$ on functions of several complex variables to the case of functions whose domain and range both lie in complex Banach spaces.*)

Let E and E^{v} be two complex Banach spaces, and let $x^{\prime}=f(x)$ be an E^{\prime}-valued function defined on a certain neighborhood $V\left(x_{0}\right)$ of a point $x_{0} \in E$. $x^{\prime}=f(x)$ is said to admit a variation or a Gateaux differential at $x=x_{0}$ if

$$
\begin{equation*}
\lim _{a \rightarrow 0} \frac{f\left(x_{0}+\alpha y\right)-f\left(x_{0}\right)}{a} \tag{1}
\end{equation*}
$$

exists strongly for any $y \in E$ (α is a complex number).
An E^{\prime}-valued function $x^{\prime}=f(x)$ defined on a domain D of E is analytic in D if it is strongly continuous on D and if it admits a Gateaux differential at every point of D. It is clear that, in case both E and E^{\prime} are the field of complex numbers, this definition coincides with the usual definition of a complex-valued analytic function of a single complex variable. Further, if E is the field of complex numbers while E^{\prime} is an arbitrary complex Banach space, then our definition coincides with that of a Banach-space-valued analytic function of a single complex variable given by E. Hille and N. Dunford. ${ }^{2)}$

An E^{\prime}-valued function $x^{\prime}=p(x)$ defined on E is a polynomial of degree n if the following conditions are satisfied: 1) $p(x)$ is strongly continuous at each point of E, 2) for each x and y in E, and for any complex number $a, p(x+a y)$ can be expressed as

$$
\begin{equation*}
p(x+\alpha y)=\sum_{k=1}^{n} \alpha^{k} p_{k}(x, y), \tag{2}
\end{equation*}
$$

where $p_{k}(x, y)$ are arbitrary E^{\prime}-valued functions of two variables x and y, 3) $p_{n}(x, y) \neq 0$ for some x and y. If, in addition to these, $p(\alpha x)=$ $a^{n} p(x)$, then the function $p(x)$ is called a homogeneous polynomial of degree n. It is clear that an E^{\prime}-valued polynomial defined on E is analytic on E.

We shall state a theorem of A. E. Taylor ${ }^{3}$) which we shall need in the following discussions:

Let E and E^{\prime} be two complex Banach spaces. If an E^{\prime}-valued

[^0]function $x^{\prime}=f(x)$ is defined and $2 s$ analytic in the sphere $S_{\rho}=$ $\{x \mid\|x\|<\rho\}$ of E, then it may be expanded into the series
\[

$$
\begin{equation*}
f(x)=f(0)+\sum_{n-1}^{\infty} f_{n}(x), \tag{3}
\end{equation*}
$$

\]

where $f_{n}(x)$ is an E^{\prime}-valued homogeneous polynomial of degree n given by

$$
\begin{equation*}
f_{n}(x)=\frac{1}{2 \pi i} \int \frac{f(\alpha x)}{\alpha^{n+1}} d \alpha . \tag{4}
\end{equation*}
$$

the integral being taken in the positive sense on the circle $|\alpha|=\rho^{\prime}<1$. The series on the right hand side of (3) converges absolutely and uniformly in the sphere $S_{\rho^{\prime}}=\left\{x \mid\|x\| \leqq \rho^{\prime}\right\}$, where ρ^{\prime} is a sufficiently small positive number.
§2. Theorem 1. Let E, E^{\prime} and $E^{\prime \prime}$ be three complex Banach spaces and let D and D^{\prime} be two domains in E and E^{\prime} respectively. If $x^{\prime}=f(x)$ is an E^{\prime}-valued analytic function defined on D whose value lies in D^{\prime}, and if $x^{\prime \prime}=g\left(x^{\prime}\right)$ is an $E^{\prime \prime}$-valued analytic function defined on D^{\prime}, then $x^{\prime \prime}=g(f(x))$ is an $E^{\prime \prime}$-valued analytic function defined on D.

Proof. It is clear that $x^{\prime \prime}=g(f(x))$ is strongly continuous on D. So it suffices to show that

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0} \frac{g\left(f\left(x_{0}+\alpha y\right)\right)-g\left(f\left(x_{0}\right)\right)}{\alpha} \tag{5}
\end{equation*}
$$

exists for any $x_{0} \in D$ and for any $y \in E$. Without loss of generality we may assume that $x_{0}=0, f(0)=0^{\prime}$ and $g\left(0^{\prime}\right)=0^{\prime \prime}$, where $0,0^{\prime}$ and $0^{\prime \prime}$ denote the origin of E, E^{\prime} and $E^{\prime \prime}$ respectively. Thus we have only to show that

$$
\begin{equation*}
\lim _{a \rightarrow 0} \frac{g(f(\alpha y))}{a} \tag{6}
\end{equation*}
$$

exists for any $y \in E$, which we shall assume given and fixed.
Since $x^{\prime}=f(x)$ is analytic at $x=0$, so there exist two positive constants δ and M such that

$$
\begin{equation*}
f(\alpha y)=\alpha f_{1}(y)+\alpha^{2} R(y, \alpha) \tag{7}
\end{equation*}
$$

with $\|R(y, \alpha)\| \leqq M$ for any α with $|\alpha| \leqq \delta$. Further, since $x^{\prime \prime}=g\left(x^{\prime}\right)$ is analytic at $x^{\prime}=0^{\prime}$, so there exist two positive constants $\delta^{\prime}(\leq \delta)$ and M^{\prime} such that

$$
\begin{equation*}
g(\alpha z)=a g_{1}(z)+\alpha^{2} S(z, \alpha) \tag{8}
\end{equation*}
$$

with $\|S(z, \alpha)\| \leqq M^{\prime}$ for any z and α with $\|z\| \leqq\left\|f_{1}(y)\right\|+\delta M$ and $|\alpha| \leq \delta^{\prime}$. Consequently, $|\alpha| \leqq \delta^{\prime}$ implies

$$
\begin{align*}
g(f(\alpha y)) & =g\left(\alpha f_{1}(y)+\alpha^{2} R(y, \alpha)\right) \tag{9}\\
& =\alpha g_{1}\left(f_{1}(y)+\alpha R(y, \alpha)\right)+\alpha^{2} S\left(f_{1}(y)+\alpha R(y, \alpha), \alpha\right)
\end{align*}
$$

Since $g_{1}(z)$ is strongly continuous, it follows from (9) that the limi (6) exists and is equal to $g_{1}\left(f_{1}(y)\right)$ for any $y \in E$.

Exactly in the same way, we may prove the following

Theorem 2. In addition to the assumptions in Theorem 1, let us assume that $0 \in D, 0^{\prime} \in D^{\prime}, f(0)=0^{\prime}$ and $g\left(0^{\prime}\right)=0^{\prime \prime}$, where $0,0^{\prime}$ and $0^{\prime \prime}$ denote the origin of E, E^{\prime} and $E^{\prime \prime}$ respectively. Let further

$$
\begin{align*}
& f(x)=\sum_{n-m}^{\infty} f_{n}(x), \tag{10}\\
& g\left(x^{\prime}\right)=\sum_{n-p}^{\infty} g_{n}\left(x^{\prime}\right) \tag{11}
\end{align*}
$$

be the Taylor expansions of $x^{\prime}=f(x)$ and $x^{\prime \prime}=g\left(x^{\prime}\right)$ at $x=0$ and $x^{\prime}=0^{\prime}$ respectively which begin with the m-th term and the p-th term respectively. Then $x^{\prime \prime}=h(x)=g(f(x))$ is an analytic function defined on D, and the Taylor expansion

$$
\begin{equation*}
h(x)=\sum_{n-m p}^{\infty} h_{n}(x) \tag{12}
\end{equation*}
$$

of $x^{\prime \prime}=h(x)$ begins with the $m p-t h$ term $h_{m p}(x)=g_{p}\left(f_{m}(x)\right)$.
§3. Theorem 3. Let E be a complex Banach space, and let $x^{\prime}=f(x)$ be an E-valued analytic function defined on the unit sphere $S=\{x \mid\|x\|<1\}$ of E which maps S into itself. If the Taylor expansion of $f(x)$ at $x=0$ is of the form :

$$
\begin{equation*}
f(x)=x+\sum_{n-2}^{\infty} f_{n}(x), \tag{13}
\end{equation*}
$$

then $x^{\prime}=f(x)$ must be the identity mapping: $f(x) \equiv x$.
Proof. It suffices to show that $f_{n}(x) \equiv 0$ for $n=2,3, \ldots$. Assume the contrary, and let $f_{m}(x)(m \geqq 2)$ be the first term which does not vanish identically. i.e. $f_{n}(x) \equiv 0$ for $\mathrm{n}=2, \ldots, m-1$, and $f_{m}\left(x_{0}\right) \neq 0$ for some $x_{0} \in S$.

Let us define a sequence $\left\{f^{(k)}(x) \mid k=1,2, \ldots\right\}$ of E-valued functions $f^{(k)}(x)$ recurrently by

$$
\begin{equation*}
f^{(k)}(x)=f\left(f^{(k-1)}(x)\right), \quad k=2,3, \ldots ; \quad f^{(1)}(x)=f(x) . \tag{14}
\end{equation*}
$$

Then, from Theorem 1 follows that each $f^{(k)}(x)$ gives an analytic mapping of S into itself. Further, it is not difficult to see, by appealing to Theorem 2, that the Taylor expansion of $x^{\prime}=f^{(k)}(x)$ at $x=0$ is of the form:

$$
\begin{equation*}
f^{(k)}(x)=x+k f_{m}(x)+\sum_{n-m+1}^{\infty} f_{n}^{(k)}(x) . \tag{15}
\end{equation*}
$$

In fact, (15) is clear for $k=1$, and the case for general k may be proved by mathematical induction.

The integration formula (4) then gives

$$
\begin{equation*}
k f_{m}(x)=\frac{1}{2 \pi i} \int \frac{f^{(k)}(a x)}{a^{m+1}} d \alpha, \tag{16}
\end{equation*}
$$

the integral being taken in the positive sense on the circle $|a|=\rho<1$. From (16) follows immediately

$$
\begin{equation*}
k\left\|f_{m}\left(x_{0}\right)\right\| \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\left\|f^{(k)}\left(\alpha x x_{0}\right)\right\|}{\rho^{m+1}} \rho d \theta \leqq \frac{1}{\rho^{m}} \tag{17}
\end{equation*}
$$

for $k=1,2, \ldots$, in contradiction to our assumption that $f_{m}\left(x_{0}\right) \neq 0$. This completes the proof of Theorem 3.
$\S 4$. Let D and D^{\prime} be two domains in two complex Banach spaces E and E^{\prime} respectively. If $x^{\prime}=f(x)$ is a one-to-one mapping of D onto D^{\prime} such that both $x^{\prime}=f(x)$ and its inverse $x=f^{-1}\left(x^{\prime}\right)$ are analytic functions in D and D^{\prime} respectively, then $x^{\prime}=f(x)$ is called an analytical mapping of D onto D^{\prime}.

Theorem 4. Let E and E^{\prime} be two complex Banach spaces, and let $x^{\prime}=f(x)$ be an analytic mapping of the unit sphere $S=\{x \mid\|x\|<1\}$ of E onto the unit sphere $S^{\prime}=\left\{x^{\prime} \mid\left\|x^{\prime}\right\|<1\right\}$ of E^{\prime}. If the origin 0 of E is mapped to the origin 0^{\prime} of E^{\prime} by $x^{\prime}=f(x)$, then $x^{\prime}=f(x)$ is a linear and isometric mapping.

Proof. For any $\theta(0 \leqq \theta<2 \pi)$, let us consider an analytic mapping $x^{\prime}=h_{\theta}(x)$ of S onto itself given by

$$
\begin{equation*}
h_{\theta}(x)=e^{-i \theta} f^{-1}\left(e^{i \theta} f(x)\right) . \tag{18}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
h_{\theta}(0)=0, \quad h_{0}(x) \equiv x . \tag{19}
\end{equation*}
$$

Further, let us consider the Taylor expansions of $f(x), g(x)=f^{-1}(x)$ and $h_{\theta}(x)$ at $x=0$:

$$
\begin{align*}
& f(x)=\sum_{n-1}^{\infty} f_{n}(x), \tag{20}\\
& g(x)=\sum_{n-1}^{\infty} g_{n}(x), \tag{21}\\
& h_{\theta}(x)=\sum_{n-1}^{\infty} h_{\theta, n}(x) . \tag{22}
\end{align*}
$$

Then Theorem 2 implies

$$
\begin{equation*}
h_{\theta, 1}(x)=e^{-i \theta} g_{1}\left(e^{i \theta} f_{1}(x)\right)=g_{1}\left(f_{1}(x)\right) . \tag{23}
\end{equation*}
$$

Hence $h_{\theta, 1}(x)$ is independent of θ, and so by (19),

$$
\begin{equation*}
h_{\theta, 1}(x) \equiv x . \tag{24}
\end{equation*}
$$

Thus Theorem 3 is applicable, and we see that $h_{\theta}(x) \equiv x$, or equivalently that $f\left(e^{i \theta} x\right) \equiv e^{i \theta} f(x)$ for any $\theta(0 \leqq 0<2 \pi)$ and for any $x \in S$. From this follows immediately by (4) that $f_{n}(x) \equiv 0$ for $n \geqq 2$. Thus we see $f(x)=f_{1}(x)$, and this shows that $f(x)$ is linear. ${ }^{1)}$ Further, since every $y \in S$ is mapped by $x^{\prime}=f(x)$ to an element $f(y) \in S^{\prime}$, so we see that $\|f(x)\|=\|(\|x\|+\varepsilon) f(x /(\|x\|+\varepsilon))\| \leqq\|x\|+\varepsilon$ for any $\varepsilon>0$, from which follows that $\|f(x)\| \leqq\|x\|$. Since the inverse inequality $\|x\|=\left\|f^{-1}(f(x))\right\|$ $\leqq\|f(x)\|$ may be obtained in a similar way, so we finally see that $\|f(x)\|=\|x\|$. This completes the proof of Theorem 4.

[^1]
[^0]: *) I am deeply grateful to Professor Kakutani who has kindly given me a number of valuable suggestions.

 1) H. Gartan, Sur les groupes des transformations analytiques, Actualités, Paris, 1938.
 2) Cf. E. Hille, Semi-group of linear transformations, Annals of Math., 40 (1939).
 3) A.F. Taylor, On the properties of analytic functions in abstract spaces, Math. Annalen, 115 (1938).
[^1]: 1) It is easy to see that a homogeneous polynomial of degree 1 is linear. It only suffices to show that a homogeneous polynomial $p(x)$ of degree 1 satisfies $p(x+y)=$ $p(x)+p(y)$. In fact, by definition, $p(x)$ satisfies a relation $p(x+a y)=p_{0}(x, y)+a p_{1}(x, y)$, for any x, y and a. It is easy to see that $p_{0}(x, y)=p(x)$, and so $p_{1}(x, y)=\frac{1}{a} p(x+a y)-$ $\frac{1}{a} p(x)=p\left(\frac{1}{a} x+y\right)-p\left(\frac{1}{a} x\right)$. If we now let $a \rightarrow \infty$, then the continuity of $p(x)$ implies that $p_{1}(x, y)=p(y)$.
